首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-translational modification by monoclonal nonspecific suppressor factor β (MNSFβ) has been implicated in the regulation of a variety of cellular events. Previous studies have demonstrated that MNSFβ covalently binds to the intracellular pro-apoptotic protein Bcl-G in a macrophage cell line, Raw264.7, suggesting involvement of this ubiquitin-like protein in apoptosis. Most recently, we found that MNSFβ covalently conjugates to endophilin II, a member of the endophilin A family, and inhibits phagocytosis by macrophages. In this study, we further examined the mechanism of action of MNSFβ/endophilin II complex in the phagocytosis of zymosan. MNSFβ/endophilin II I mediated inhibition of phagocytosis in Raw264.7 cells was neutralized by anti-Decti-1, β-glucan receptor, mAb, indicating that MNSFβ/endophilin II is a mediator of Dectin-1 signaling in regulating phagocytosis. The β-glucan-dependent TNFα response to zymosan was significantly increased by the treatment with endophilin II siRNA and/or MNSFβ siRNA. Conversely, cotransfection of endophilin II and MNSFβ cDNAs inhibited the enhancement of zymosan-induced TNFα production. Interestingly, endophilin II siRNA did not affect Pam3CSK4 (TLR2 specific ligand)-induced TNFα production. Endophilin II and/or MNSFβ siRNA enhanced zymosan-induced IκBα degradation. Together, these results demonstrate that MNSFβ/endophilin II inhibits the signal pathway upstream of IKK activation, but not downstream of TLR2 signaling.  相似文献   

2.
Monoclonal-nonspecific suppressor factor (MNSF) is a lymphokine derived from murine T cell hybridoma. The target tissues are both LPS-stimulated B cells and Con A-stimulated T cells. Since the action of MNSF may be mediated by its binding to specific cell surface receptors, we characterized the mode of this binding. The purified MNSF was labeled with 125I, using the Bolton-Hunter reagent. The labeled MNSF bound specifically to a single class of receptor (300 receptors per cell) on mitogen-stimulated murine B cells or T cells with an affinity of 16 pM at 24 degrees C, in the presence of sodium azide. Competitive experiments showed that MNSF bound to the specific receptor and that the binding was not shared with IL2, IFN-gamma, and TNF. Various cell types were surveyed for the capacity to specifically bind 125I-MNSF. 125I-MNSF bound to MOPC-31C (a murine plasmacytoma line) and to EL4 (a murine T lymphoma line). The presence of specific binding correlates with the capacity of the cells to respond to MNSF. These data support the view that like other polypeptide hormones, the action of MNSF is mediated by specific cell surface membrane receptor protein. Identification of these receptors will provide insight into the apparently diverse activities of MNSF.  相似文献   

3.
After a 2-hr incubation with soluble immune response suppressor (SIRS), a product of concanavalin A-activated murine T cells, macrophages release a factor, M phi-derived suppressor factor (M phi-SF), which nonspecifically suppresses immune responses in vitro. The mechanism(s) of action of M phi-SF and range of cell types affected by M phi-SF have been investigated. M phi-SF suppressed antibody responses to background levels if added at culture initiation and by 80 to 90% if added as late as 2 hr before assay. Primary and secondary IgM and IgG antibody responses, proliferative responses to T cell and B cell mitogens, antibody and protein secretion, and the division of several tumor cell lines in culture were inhibited by M phi-SF. Division of synchronized tumor cells was inhibited when M phi-SF was added at any point prior to and during mitosis; this inhibition could be reversed with 2-mercaptoethanol. In the presence of M phi-SF, asynchronous tumor cells accumulated in the cell cycle just prior to cell division and could be released into mitosis by 2-mercaptoethanol. These data indicate that M phi-SF inhibits cell division by causing a block at or in mitosis and suggest that M phi-SF may be a general inhibitor of cellular proliferation and possibly of protein secretion.  相似文献   

4.
Growth and differentiation of B cells into Ig-secreting plasma cells is regulated by both T cells and macrophages and/or their secreted factors. Although the regulatory role of various cell-derived factors has been examined, the involvement of the macrophage-derived factor, TNF, in human B cell growth and differentiation has not yet been investigated. In the present study we examine the role of rTNF in polyclonal B cell response of human PBL induced by PWM. The addition of rTNF at the initiation of the culture resulted in the dose-dependent inhibition of the generation of both IgG and IgM PFC. Inhibition of PFC development followed the same dose response as rTNF-mediated cytotoxicity against a TNF-sensitive tumor target. The mechanism of rTNF-mediated suppression was examined in different experimental systems. Recombinant TNF did not affect the viability or proliferation of either the T cell or B cell subpopulations, suggesting that TNF does not mediate its suppressive effect by cytotoxic mechanisms. Kinetic studies in which rTNF was added at different times after initiation of culture indicated that inhibition can be observed as late as 4 days of culture and suggested that TNF acts at a late phase of the growth and differentiation pathway of B cells. In further studies we examined the cellular level of TNF-mediated suppression. The addition of rTNF to supernatants containing helper factors and enriched B cells resulted in no inhibition, suggesting that TNF does not act at the B cell level. This was confirmed by demonstrating that rTNF does not inhibit spontaneous PFC development by the CESS B cell line. The effect of TNF on T cell subpopulations was examined by using normal or irradiated T cells, which inactivate suppressor cells. Addition of rTNF to B cells combined with either T cell population suppressed both IgG and IgM PFC development, indicating that the target cell for suppression is the T helper cell but not ruling out an effect on macrophages or the T suppressor cells. Combined, the observed results demonstrate that rTNF suppresses PWM-induced B cell differentiation without affecting B cell proliferation. TNF appears to mediate the suppression by acting directly on T helper cells or else by regulating the production of factors controlling T cell activation and lymphokine secretion.  相似文献   

5.
To elucidate the cytotoxic mechanism of tumor necrosis factor (TNF), we isolated TNF-resistant sublines of L929 cells. As compared with L929 cells, TNF-resistant cells retained similar number and affinity of TNF-binding sites, and showed a similar growth rate. TNF stimulated arachidonate release from L929 cells, while no stimulation was observed at all in TNF-resistant cells tested. The cytotoxic action of TNF on L929 cells was inhibited by indomethacin, suggesting that prostaglandin may be involved in the action. Therefore, TNF-stimulated prostaglandin production was examined in L929 and TNF-resistant sublines. The amount of PGE2 produced by L929 cells was increased more than 5-fold after the addition of TNF, whereas the amount of PGE2 did not change in the resistant sublines following addition of the factor. TNF-stimulated arachidonate release and PGE2 production were reversed by islet-activating protein (IAP)-treatment of L929 cells. These results suggest that arachidonate release and subsequent prostaglandin production are important for the cytotoxic action of TNF and that these processes are mediated by GTP-binding protein (G protein) that is coupled to the TNF-receptor.  相似文献   

6.
Dexamethasone inhibits the cytotoxic activity of tumor necrosis factor   总被引:2,自引:0,他引:2  
Effect of dexamethasone (DEX) on the cytotoxic activity of tumor necrosis factor (TNF) was examined using murine fibroblast cell line (L929 cells). DEX protected cells from the cytotoxic action of TNF. Protection of cytotoxic action was apparent when cells were pre-treated with DEX for 12h and no protection was observed in the presence of cycloheximide. These results suggested that de novo synthesis of new proteins was required for DEX-mediated protection. Moreover, prolonged simultaneous treatment with TNF and DEX resulted in the enhancement of cell growth, suggesting that TNF acted as a growth factor when cells were protected from the cytotoxic action of TNF. These results suggested that the signal transduction system for fibroblast growth enhancing and cytotoxic action of TNF were different from each other and that the interaction between TNF and glucocorticoids may play a modulating role in some inflammatory processes in vivo.  相似文献   

7.
Tumor necrosis factor-mediated cytotoxicity involves ADP-ribosylation   总被引:9,自引:0,他引:9  
The mechanism of TNF-mediated cytotoxicity was studied in several cell lines, including L929 murine fibroblasts. TNF caused a time- and dose-dependent increase of ADP-ribosylation in L929 target cells parallel to cell death. During the course of TNF-mediated cytotoxicity in the presence of actinomycin D, an increase in ADP-ribosylation became apparent between 4 and 6 h after exposure to TNF. Intracellular NAD+ and ATP levels decreased parallel to but not preceding cell death. Two inhibitors of ADP-ribosylation, namely 3-aminobenzamide and nicotinamide, prevented TNF-mediated cytotoxicity. Another target, the human cervical carcinoma cell line ME-180, showed an increase in ADP-ribosylation when treated with TNF, and the cytotoxic action of TNF on this target cell was inhibited by these two inhibitors. In the absence of actinomycin D, treatment of L929 cells with TNF also increased ADP-ribosylation, and the cytotoxic action of TNF was inhibited by nicotinamide. These results indicate that ADP-ribosylation may be involved in the TNF-mediated cytotoxic reaction.  相似文献   

8.
We examined the ability of human natural killer (NK) cells to modulate T cell-dependent mitogen-induced B cell responses. Highly purified NK cells inhibited the polyclonal antibody responses of autologous pokeweed mitogen (PWM)-stimulated unfractionated mononuclear cells in a reverse hemolytic plaque-forming cell (PFC) assay. Investigation of the possible mechanism(s) of the suppressor activity of NK cells revealed that lysis of mitogen-stimulated cells was unlikely. Chromium-51 release cytotoxicity assays of PWM-stimulated mononuclear cells did not demonstrate lysis by NK cells. Additionally, the monoclonal antibody 13.3, which abrogates NK cell cytolysis, did not reverse NK cell-dependent suppression of PFC formation. The putative lytic molecule elaborated by NK cells, NK cytotoxic factor, did not suppress B cell responses, further supporting a nonlytic inhibitory mechanism. That NK cell-derived lymphokines such as IFN-alpha, IFN-gamma, or IL-2 were uninvolved in the down-regulation of B cells was corroborated by the failure of antibodies to these mediators to reverse the suppression. NK cells did not suppress PFC formation when T cells were replaced by supernatants from PWM-stimulated T cells; additionally, NK cells had no effect on the generation of these necessary T cell factors. However, the coculture of T cells with NK cells resulted in the induction of suppressor activity within the T cell population suggesting that this was the mechanism of NK cell-mediated suppression of B cell responses.  相似文献   

9.
Supernatants collected from cisplatin-treated macrophages demonstrated enhanced cytotoxicity against actinomycin-D-treated L929 cells and also enhanced the thymocyte proliferation in response to concanavalin A, showing that cisplatin-treated macrophages release interleukin-1 (IL-1) and tumor necrosis factor (TNF) into the culture supernatant. The supernatant collected from untreated macrophages showed little TNF and IL-1 activity. The release of TNF and IL-1 was observed to be dependent on the dose and duration of cisplatin treatment. Medium alone containing cisplatin did not enhance thymocyte proliferation and had little cytotoxic effect on actinomycin-D-treated L929 cells. Cisplatin-treated macrophage culture supernatants were chromatographed over a Superose 12 column on an FPLC system. TNF activity eluted in two major peaks with apparent molecular weights of 50-55 and 15-20 kilodaltons, respectively. The kinetics of IL-1 release was also studied. Maximum production and release of IL-1 were observed up to 24 h after cisplatin treatment and then gradually declined. Freeze-thaw lysates of cisplatin-treated macrophages also showed enhanced IL-1 activity. Paraformaldehyde (PFA)-fixed cisplatin-treated macrophages showed significantly enhanced cytotoxic activity against L929 cells as compared to PFA-fixed untreated macrophages. PFA-fixed cisplatin-treated macrophages also enhanced thymocyte proliferation. These results suggest that cisplatin treatment of murine macrophages also results in increased expression of membrane-associated IL-1 and TNF activity.  相似文献   

10.
Several human T cell derived factors capable of stimulating human B cells to synthesize DNA have been previously described. One such factor exhibits an apparent m.w. of 50,000 Da and has been termed 50-kDa-B cell growth factor (BCGF). In this report, we show that a human B cell proliferation pathway based on the sequential action of anti-mu antibody, 50-kDa-BCGF and IL-2 is inhibited in the presence of human rIL-4. Although IL-4 itself is capable of triggering B cell DNA synthesis as measured at 72 h, this lymphokine inhibits, in a dose-related manner, the 50-kDa-BCGF driven response of B cells to IL-2 when such proliferation is determined after 144 h. This inhibition takes place at an early step of the B cell activation and does not require the presence of IL-4 during the whole culture period. Such inhibitory activity of IL-4 is specific to the IL-2-induced B cell proliferation because DNA synthesis measured in the presence of semi-purified human 12-kDa-BCGF is not affected by the presence of IL-4. Our results suggest that a particular pathway of human B cell activation leading to the proliferation of these cells in the presence of IL-2 could be either up- or down-modulated by 50-kDa-BCGF and IL-4, respectively.  相似文献   

11.
Post-translational modification by monoclonal nonspecific suppressor factor β (MNSFβ) has been involved in the regulation of a variety of cellular processes. Previous studies have demonstrated that MNSFβ covalently binds to the intracellular pro-apoptotic protein Bcl-G and regulates TLR-4-mediated signal transduction. Recently, we found that MNSFβ also covalently conjugates to endophilin II, a member of the endophilin A family, and inhibits the signal pathway upstream of IKK activation, but not downstream of TLR-2 signaling. In this study, we further examined the mechanism of action of MNSFβ in TLR-2-mediated signal transduction in macrophage-like cell line Raw264.7 cells. Although MNSFβ siRNA enhanced Pam(3)CDK(4) (TLR-2-specific ligand)-stimulated TNFα production, Bcl-G siRNA did not affect. MNSFβ cDNA inhibited the Pam(3)CDK(4)-stimulated TNFα production. High-molecular weight (130 kDa) MNSFβ-adduct was induced in Pam(3)CDK(4)-stimulated Raw264.7 cells. This MNSFβ-adduct was not induced by LPS, indicative of the specificity of TLR-2-mediated signal transduction. Similar observations were seen in BALB/c peritoneal macrophages. Interestingly, 40-kDa MNSFβ-adduct was tyrosine phosphorylated by Pam(3)CDK(4) stimulation. Collectively, novel MNSFβ-adducts may regulate TLR-2 signaling pathway in macrophages.  相似文献   

12.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor κB (NF-κB) and also expression of NF-κB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-κB (IκBα) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IκBα kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-κB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.  相似文献   

14.
Previous results that were obtained by using supernatants from the co-culture of human peripheral blood lymphocytes and the natural killer susceptible cell line K562 strongly inhibited the growth of various tumor cell lines. No correlation was observed between the susceptibility of the target cell lines to growth inhibition and to lysis by natural killer cells. Rather the spectrum of cytostatic activity and the characteristics of the soluble factor were similar to those of leukoregulin (LRG), a recently described lymphokine. Because of the recent availability of recombinant tumor necrosis factor (TNF) and lymphotoxin (LT), we compare the target selectivity and mechanism of action of these (TNF, LT, LRG) factors with natural killer cytotoxic factor (NKCF). The pattern of target cell susceptibility to growth inhibition or cytolysis by the factors were quite distinct from the pattern observed when cells were exposed to NKCF. Furthermore, antibodies to rLT or rTNF had no effect on LRG cytostasis or NKCF lysis, arguing against a requirement for or synergistic interaction with low levels of LT or TNF. Some of the targets susceptible to LRG were growth inhibited but were not lysed, thereby distinguishing it from NKCF. Furthermore, LRG cytostasis was not inhibited by mannose-6-PO4 or rabbit antibodies to granule cytolysin, both of which block natural killer cytotoxic factor. Therefore, LRG appears to be a cytostatic factor produced by large granular lymphocytes in response to K562 that is distinct from NKCF, TNF, and LT. In addition, NKCF, rLT, rTNF, and LRG, although having cytotoxic/cytostatic activity, are distinct functional factors and may represent a family of lytic factors.  相似文献   

15.
Monoclonal nonspecific suppressor factor (MNSF), a product of a murine T cell hybridoma, suppresses the antibody response to lipopolysaccharide. In an attempt to clarify the N-terminal sequence, MNSF was prepared and purified by affinity chromatography with the use of an anti-MNSF monoclonal antibody (MO6), and reverse-phase high-pressure liquid chromatography. On the SDS-PAGE, the purified MNSF showed a single band with a molecular weight of 12,000. The N-terminal amino acid sequence of the protein was determined and showed no strong homology to any of the sequences of known biologically active proteins. However, the sequence revealed significant (60%) amino acid identity to transforming growth factor beta 2 (TGF beta 2).  相似文献   

16.
The secretion of immunoglobulin (Ig) from cultured mononuclear cells by lipopolysaccharide (LPS) stimulation is inhibited by monoclonal nonspecific suppressor factor (MNSF), a lymphokine produced by murine T cell hybridoma. In an attempt to develop a murine monoclonal antibody (MAb) with specific reactivity against MNSF, a cell fusion technique that incorporated immune murine splenocytes and HAT-sensitive murine myeloma cells was used. Cross-reactivity experiments confirmed that the MAb (MO6) does not bind to unrelated proteins such as bovine serum albumin, mouse IgG, and murine interferon-gamma (IFN-gamma). There are no effects when anti-IFN-gamma antibodies are used with MNSF. As far as biological activity is concerned, MO6 inhibits in vitro the activity of MNSF in terms of the Ig secretion from cultured lymphocytes. By using MO6, affinity chromatography and immunoblotting were performed. The MNSF on the SDS-PAGE showed a band with m.w. of approximately 70,000, indicating the formation of an aggregate in saline; but after treatment with 0.4 M pyridine-acetic acid buffer, separate bands of 24,000 and 16,000 daltons were evident. Therefore MO6 recognizes 70,000 and both 24,000 and 16,000 daltons. Thus we confirmed by using this MAb and affinity chromatography, the existence of human counterpart, human nonspecific suppressor factor (hNSF), in supernatant from concanavalin A-stimulated T cells. When hNSF was fractionated by high pressure liquid chromatography (HPLC), the activity was found in a region corresponding to 70,000 daltons. However, when fractionated in pyridine-acetic acid buffer, hNSF activity was distributed in a slightly wider range of 15,000 to 30,000 daltons. Physicochemical analysis showed that the purified hNSF is resistant to either heating at 56 degrees C or to 2-mercaptoethanol treatment; however, it is labile to acidification at pH 2.0 and is also sensitive to protease treatment, the characteristics of which were similar to those of murine MNSF. Thus MO6 was confirmed to be a pertinent tool for isolation of hNSF, as well as for murine MNSF.  相似文献   

17.
Interleukin-10 (IL-10), also known as cytokine synthesis inhibitory factor, is capable of inhibiting synthesis of pro-inflammatory cytokines like IFNγ, IL-2, IL-3, TNFα and GM-CSF made by cells such as macrophages and T helper Type 1 cells. We observed that normal human serum, derived from a healthy individual but containing large amounts of IL-10, inhibited cytotoxic activity and interfered with granzyme B release from alloreactive cytotoxic T cell (CTL) clones in vitro, but did not affect perforin release. The addition of normal human serum containing high levels of anti-IL-10 IgG neutralized the inhibitory effects of IL-10 serum. Moreover, we have identified that cytotoxic activity and granzyme B release from an Epstein-Barr virus (EBV)-specific CTL clone was similarly inhibited in the presence of IL-10 serum, while perforin release was unaffected. Anti-IL-10 IgG serum also appeared to neutralize the inhibitory effect of IL-10 serum on an EBV-specific CTL clone.  相似文献   

18.
In addition to its cytotoxic/cytostatic action on many tumor cells in vitro, tumor necrosis factor (TNF) was recently shown to stimulate the growth of some types of cells in culture. We examined the action of TNF in BALB/c 3T3 cells which have been used extensively to study growth regulation. In subconfluent, rapidly dividing 3T3 cultures, murine (Mu) TNF was cytotoxic, while human (Hu) TNF had virtually no antiproliferative action on the cells. In contrast, in density-arrested BALB/c 3T3 cells maintained in a chemically defined, serum-free medium, MuTNF produced a dose-dependent stimulation of DNA synthesis. In stimulating DNA synthesis, MuTNF acted synergistically with both epidermal growth factor or platelet-derived growth factor. While stimulating DNA synthesis in quiescent 3T3 cultures, high doses of MuTNF (100 or 10 ng/ml) were also cytotoxic for a portion of the cells in the same cultures. Cytotoxicity was apparent 2 h after the addition of MuTNF, well before the onset of DNA synthesis. BALB/c 3T3 cell variants selected for their resistance to the cytotoxic action of MuTNF retained the capacity to respond to the mitogenic action of MuTNF, indicating that the stimulation of DNA synthesis by TNF is not a consequence of a TNF "wounding effect." Addition of TNF to density-arrested 3T3 cells resulted in the release of free arachidonic acid and palmitic acid from the cells. Quinacrine, a phospholipase inhibitor, inhibited both cytotoxicity and DNA synthesis in response to TNF, and melittin, a phospholipase activator, mimicked both the cytotoxic and mitogenic actions of TNF in quiescent BALB/c 3T3 cells. These results suggest that phospholipid breakdown is part of the essential early signal transduction events required both for the cytotoxic and mitogenic response to TNF action.  相似文献   

19.
Soluble immune response suppressor (SIRS) is a product of concanavalin A-stimulated murine T cells that, when activated or oxidized by macrophages or H2O2 (SIRSox), suppresses in vitro immune responses and inhibits cell division by normal and neoplastic cells. SIRSox is inactivated by a variety of electron donors, which suggests that SIRSox may be an oxidizing agent. Incubation of lymphocytes with SIRSox, but not with SIRS, partially reversed concanavalin A-mediated inhibition of capping of membrane immunoglobulin on B cells, and disrupted the cytoplasmic array of microtubules visualized by fluorescence microscopy. SIRSox also inhibited microtubule assembly in vitro in a concentration-dependent manner. Inactivation of SIRSox by dithiothreitol prevented SIRSox-mediated reversal of inhibition of capping and inhibition of microtubule assembly. These results reveal a pattern of SIRSox activity similar to sulfhydryl-dependent cytoskeletal disrupting agents (e.g., N-ethylmaleimide, cytochalasin A, p-benzoquinone), and suggest that SIRSox-mediated suppression of proliferation may involve interference with sulfhydryl-dependent cytoskeletal events critical for cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号