首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We evaluated effects of the thiazolidinedione, rosiglitazone, on insulin-induced activation of protein kinase C (PKC)-zeta/lambda and glucose transport in adipocytes of Goto-Kakizaki (GK)-diabetic and nondiabetic rats. Insulin effects on PKC-zeta/lambda and 2-deoxyglucose uptake were diminished by approximately 50% in GK adipocytes, as compared with control adipocytes. This defect in insulin-induced PKC-zeta/lambda activation was associated with diminished activation of IRS-1-dependent phosphatidylinositol (PI) 3-kinase, and was accompanied by diminished phosphorylation of threonine 410 in the activation loop of PKC-zeta; in contrast, protein kinase B (PKB) activation and phosphorylation were not significantly altered. Rosiglitazone completely reversed defects in insulin-stimulated 2-deoxyglucose uptake, PKCzeta/lambda enzyme activity and PKC-zeta threonine 410 phosphorylation, but had no effect on PI 3-kinase activation or PKB activation/phosphorylation in GK adipocytes. Similarly, in adipocytes of nondiabetic rats, rosiglitazone provoked increases in insulin-stimulated 2-deoxyglucose uptake, PKC-zeta/lambda enzyme activity and phosphorylation of both threonine 410 activation loop and threonine 560 autophosphorylation sites in PKC-zeta, but had no effect on PI 3-kinase activation or PKB activation/phosphorylation. Our findings suggest that (a) decreased effects of insulin on glucose transport in adipocytes of GK-diabetic rats are due at least in part to diminished phosphorylation/activation of PKC-zeta/lambda, and (b) thiazolidinediones enhance glucose transport responses to insulin in adipocytes of both diabetic and nondiabetic rats through increases in phosphorylation/activation of PKC-zeta/lambda.  相似文献   

2.
The AMP-activated protein kinase (AMPK) is known to increase cardiac insulin sensitivity on glucose uptake. AMPK also inhibits the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) pathway. Once activated by insulin, mTOR/p70S6K phosphorylates insulin receptor substrate-1 (IRS-1) on serine residues, resulting in its inhibition and reduction of insulin signaling. AMPK was postulated to act on insulin by inhibiting this mTOR/p70S6K-mediated negative feedback loop. We tested this hypothesis in cardiomyocytes. The stimulation of glucose uptake by AMPK activators and insulin correlated with AMPK and protein kinase B (PKB/Akt) activation, respectively. Both treatments induced the phosphorylation of Akt substrate 160 (AS160) known to control glucose uptake. Together, insulin and AMPK activators acted synergistically to induce PKB/Akt overactivation, AS160 overphosphorylation, and glucose uptake overstimulation. This correlated with p70S6K inhibition and with a decrease in serine phosphorylation of IRS-1, indicating the inhibition of the negative feedback loop. We used the mTOR inhibitor rapamycin to confirm these results. Mimicking AMPK activators in the presence of insulin, rapamycin inhibited p70S6K and reduced IRS-1 phosphorylation on serine, resulting in the overphosphorylation of PKB/Akt and AS160. However, rapamycin did not enhance the insulin-induced stimulation of glucose uptake. In conclusion, although the insulin-sensitizing effect of AMPK on PKB/Akt is explained by the inhibition of the insulin-induced negative feedback loop, its effect on glucose uptake is independent of this mechanism. This disconnection revealed that the PKB/Akt/AS160 pathway does not seem to be the rate-limiting step in the control of glucose uptake under insulin treatment.  相似文献   

3.
In the present study we have investigated the effect of increased serine/threonine phosphorylation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) by okadaic acid pretreatment on brown adipocyte insulin signalling leading to glucose transport, an important metabolic effect of insulin in brown adipose tissue. Okadaic acid pretreatment before insulin stimulation decreased IRS-1 and IRS-2 tyrosine phosphorylation in parallel to a decrease in their sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. IRS-1/IRS-2-associated p85alpha and phosphatidylinositol (PI) 3-kinase enzymatic activity were partly reduced in brown adipocytes pretreated with okadaic acid upon stimulation with insulin. Furthermore, insulin-induced glucose uptake was totally abolished by the inhibitor in parallel with a total inhibition of insulin-induced protein kinase C (PKC) zeta activity. However, activation of Akt/PKB or p70 S6 kinase (p70(s6k)) by insulin remained unaltered. Our results suggest that downstream of PI 3-kinase, insulin signalling diverges into at least two independent pathways through Akt/PKB and PKC zeta, the PKC zeta pathway contributing to glucose transport induced by insulin in fetal brown adipocytes.  相似文献   

4.
Activity of the sympathetic nervous system is an important factor involved in the pathogenesis of insulin resistance and associated metabolic and vascular abnormalities. In this study, we investigate the molecular basis of cross-talk between beta(3)-adrenergic and insulin signaling systems in mouse brown adipocytes immortalized by SV40 T infection. Insulin-induced tyrosine phosphorylation of the insulin receptor, insulin receptor substrate 1 (IRS-1), and IRS-2 was reduced by prestimulation of beta(3)-adrenergic receptors (CL316243). Similarly, insulin-induced IRS-1-associated and phosphotyrosine-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity, but not IRS-2-associated PI 3-kinase activity, was reduced by beta(3)-adrenergic prestimulation. Furthermore, insulin-stimulated activation of Akt, but not mitogen-activated protein kinase, was diminished. Insulin-induced glucose uptake was completely inhibited by beta(3)-adrenergic prestimulation. These effects appear to be protein kinase A-dependent. Furthermore inhibition of protein kinase C restored the beta(3)-receptor-mediated reductions in insulin-induced IRS-1 tyrosine phosphorylation and IRS-1-associated PI 3-kinase activity. Together, these findings indicate cross-talk between adrenergic and insulin signaling pathways. This interaction is protein kinase A-dependent and, at least in part, protein kinase C-dependent, and could play an important role in the pathogenesis of insulin resistance associated with sympathetic overactivity and regulation of brown fat metabolism.  相似文献   

5.
PKB (protein kinase B), also known as Akt, is a key component of insulin signalling. Defects in PKB activation lead to insulin resistance and metabolic disorders, whereas PKB overactivation has been linked to tumour growth. Small-molecule PKB inhibitors have thus been developed for cancer treatment, but also represent useful tools to probe the roles of PKB in insulin action. In the present study, we examined the acute effects of two allosteric PKB inhibitors, MK-2206 and Akti 1/2 (Akti) on PKB signalling in incubated rat soleus muscles. We also assessed the effects of the compounds on insulin-stimulated glucose uptake, glycogen and protein synthesis. MK-2206 dose-dependently inhibited insulin-stimulated PKB phosphorylation, PKBβ activity and phosphorylation of PKB downstream targets (including glycogen synthase kinase-3α/β, proline-rich Akt substrate of 40?kDa and Akt substrate of 160?kDa). Insulin-stimulated glucose uptake, glycogen synthesis and glycogen synthase activity were also decreased by MK-2206?in a dose-dependent manner. Incubation with high doses of MK-2206 (10?μM) inhibited insulin-induced p70 ribosomal protein S6 kinase and 4E-BP1 (eukaryotic initiation factor 4E-binding protein-1) phosphorylation associated with increased eEF2 (eukaryotic elongation factor 2) phosphorylation. In contrast, Akti only modestly inhibited insulin-induced PKB and mTOR (mammalian target of rapamycin) signalling, with little or no effect on glucose uptake and protein synthesis. MK-2206, rather than Akti, would thus be the tool of choice for studying the role of PKB in insulin action in skeletal muscle. The results point to a key role for PKB in mediating insulin-stimulated glucose uptake, glycogen synthesis and protein synthesis in skeletal muscle.  相似文献   

6.
Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia.  相似文献   

7.
Dimethylaminopurine (DMAP) has previously been used as an inhibitor of phosphorylation in studies of meiotic events, and more recently to investigate TNFalpha signaling, because of its potential to inhibit activation of c-jun N-terminal kinase (JNK). Here we have addressed the effects of DMAP on metabolic insulin responses in adipocytes and on intracellular insulin signaling molecules. At 100 micromol/L, DMAP completely inhibited the ability of insulin to counteract lipolysis in isolated adipocytes. Insulin-induced lipogenesis and glucose uptake was inhibited to a lesser degree in a concentration-dependent manner starting at 10 micromol/L DMAP. Insulin-induced tyrosine phosphorylation of the insulin receptor was not affected by DMAP. Insulin-induced activation of protein kinase B, a known mediator of insulin action, was not inhibited by 100 micromol/L, but to a low extent by 1 mmol/L DMAP in intact cells. This inhibition was not sufficient to affect activation of the downstream protein kinase B substrate phosphodiesterase 3B. The inhibition of activation of JNK as a possible mechanism whereby DMAP affects insulin-induced antilipolysis, lipogenesis, and glucose uptake, was investigated using the JNK inhibitor SP600125. At 100 micromol/L, SP600125 completely reversed the antilipolytic effect of insulin, as well as partially inhibited insulin-induced lipogenesis and glucose-uptake, indicating that JNK may be involved in mediating these actions of insulin. Inhibition of JNK by DMAP may therefore partly explain the negative impact of DMAP on insulin action in adipocytes.  相似文献   

8.
It has been reported that pertussis toxin (PTX) suppresses the function of trimeric guanine nucleotide binding protein (G-protein). We examined the effect of PTX on insulin-induced glucose uptake, diacylglycerol (DG)-protein kinase C (PKC) signalling, phosphatidylinositol (PI) 3-kinase and PKC zeta activation and insulin-induced tyrosine phosphorylation of Gialpha to clarify the role of G-protein for insulin-mediated signal transduction mechanism in rat adipocytes and soleus muscles. Isolated adipocytes and soleus muscles were preincubated with 0.01 approximately 1 ng/ml PTX for 2 hours, followed by stimulation with 10-100 nM insulin or 1 microM tetradecanoyl phorbol-13-acetate (TPA). Pretreatment with PTX resulted in dose-responsive decreases in insulin-stimulated [3H]2-deoxyglucose (DOG) uptake, and unchanged TPA-stimulated [3H]2-DOG uptake, without affecting basal [3H]2-DOG uptake. In adipocytes, insulin-induced DG-PKC signalling, PI 3-kinase activation and PKC zeta translocation from cytosol to the membrane were suppressed when treated with PTX, despite no changes in [125I]insulin-specific binding and insulin receptor tyrosine kinase activity. Moreover, to elucidate insulin-stimulated tyrosine phosphorylation of 40 kDa alpha-subunit of G-protein (Gialpha-2), adipocytes were stimulated with 10 nM insulin for 10 minutes, homogenized, immunoprecipitated with anti-phosphotyrosine antibody, and immunoblotted with anti-Gialpha-2 antibody. Insulin-induced tyrosine phosphorylation of Gialpha-2 was found by immunoblot analysis with anti-Gialpha-2 antibody. These results suggest that G-protein regulates DG-PKC signalling by binding of Gialpha-2 with GTP and PI 3-kinase-PKC zeta signalling by releasing of Gbetagamma via dissociation of trimeric G-protein after insulin receptor tyrosine phosphorylation in insulin-sensitive tissues.  相似文献   

9.
In the present study, we have examined whether IKKβ [IκB (inhibitor of nuclear factor κB) kinase β] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKβ, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKβ as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKβ via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKβ target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKβ in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKβ. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKβ to IRS1, supporting our findings that IKKβ, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.  相似文献   

10.
The roles of Akt (protein kinase B) and the atypical lambda isoform of protein kinase C (PKClambda), both of which act downstream of phosphoinositide 3-kinase, in the activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1) in response to insulin were investigated. A mutant Akt (Akt-AA) in which the phosphorylation sites targeted by growth factors are replaced by alanine was shown to inhibit insulin-induced activation of both Akt and glycogen synthase in L6 myotubes. Expression of a mutant Akt in which Lys179 in the kinase domain was replaced by aspartate also inhibited insulin-induced activation of glycogen synthase but had no effect on insulin activation of endogenous Akt. A kinase-defective mutant of PKClambda (lambdaDeltaNKD), which prevents insulin-induced activation of PKClambda, did not affect the activation of glycogen synthase by insulin. Insulin-induced phosphorylation of 4E-BP1 was inhibited by Akt-AA in Chinese hamster ovary cells. However, lambdaDeltaNKD had no effect on 4E-BP1 phosphorylation induced by insulin. These data suggest that Akt, but not PKClambda, is required for insulin activation of glycogen synthase and for insulin-induced phosphorylation of 4E-BP1.  相似文献   

11.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

12.
Insulin rapidly stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of insulin receptor substrates (IRS), which in turn associates and activates PI 3-kinase, leading to an increase in glucose uptake. Phosphorylation of IRS proteins and activation of downstream kinases by insulin are transient and the mechanisms for the subsequent downregulation of their activity are largely unknown. We report here that the insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase association to IRS-1 were strongly sustained by the proteasome inhibitors, MG132 and lactacystin. In contrast, no effect was detected on the insulin receptor and IRS-2 tyrosine phosphorylation. Interestingly, lactacystin also preserved PKB activation and insulin-induced glucose uptake. In contrast, calpeptin, a calpain inhibitor, was ineffective. Tyrosine phosphatase assays were also performed, showing that lactacystin was not functioning directly as a tyrosine phosphatase inhibitor "in vitro." In conclusion, proteasome inhibitors can regulate the tyrosine phosphorylation of IRS-1 and the downstream insulin signaling pathway, leading to glucose transport.  相似文献   

13.
Akt/PKB activation is reportedly essential for insulin-induced glucose metabolism in the liver. During the hypoinsulinemic and hyperglycemic phase in the Zucker diabetic fatty (ZDF) rat liver, insulin-induced phosphorylations of the insulin receptor (IR) and insulin receptor substrate (IRS)-1/2 were significantly enhanced. Similarly, phosphatidylinositol (PI) 3-kinase activities associated with IRS-1/2 were markedly increased in ZDF rat liver compared with those in the control lean rat liver. However, interestingly, insulin-induced phosphorylation and kinase activation of Akt/PKB were severely suppressed. The restoration of normoglycemia by sodium-dependent glucose transporter (SGLT) inhibitor to ZDF rats normalized elevated PI 3-kinase activation and phosphorylation of IR and IRS-1/2 to lean control rat levels. In addition, impaired insulin-induced Akt/PKB activation was also normalized. These results suggest that chronic hyperglycemia reduces the efficiency of the activation step from PI 3-kinase to Akt/PKB kinase and that this impairment is the molecular mechanism underlying hyperglycemia-induced insulin resistance in the liver.  相似文献   

14.
Insulin activates certain protein kinase C (PKC) isoforms that are involved in insulin-induced glucose transport. In this study, we investigated the possibility that activation of PKCdelta by insulin participates in the mediation of insulin effects on glucose transport in skeletal muscle. Studies were performed on primary cultures of rat skeletal myotubes. The role of PKCdelta in insulin-induced glucose uptake was evaluated both by selective pharmacological blockade and by over-expression of wild-type and point-mutated inactive PKCdelta isoforms in skeletal myotubes. We found that insulin induces tyrosine phosphorylation and translocation of PKCdelta to the plasma membrane and increases the activity of this isoform. Insulin-induced effects on translocation and phosphorylation of PKCdelta were blocked by a low concentration of rottlerin, whereas the effects of insulin on other PKC isoforms were not. This selective blockade of PKCdelta by rottlerin also inhibited insulin-induced translocation of glucose transporter 4 (GLUT4), but not glucose transporter 3 (GLUT3), and significantly reduced the stimulation of glucose uptake by insulin. When overexpressed in skeletal muscle, PKCdelta and PKCdelta were both active. Overexpression of PKCdelta induced the translocation of GLUT4 to the plasma membrane and increased basal glucose uptake to levels attained by insulin. Moreover, insulin did not increase glucose uptake further in cells overexpressing PKCdelta. Overexpression of PKCdelta did not affect basal glucose uptake or GLUT4 location. Stimulation of glucose uptake by insulin in cells overexpressing PKCdelta was similar to that in untransfected cells. Transfection of skeletal myotubes with dominant negative mutant PKCdelta did not alter basal glucose uptake but blocked insulin-induced GLUT4 translocation and glucose transport. These results demonstrate that insulin activates PKCdelta and that activated PKCdelta is a major signaling molecule in insulin-induced glucose transport.  相似文献   

15.
Gene targeting was used to characterize the physiological role of growth factor receptor-bound (Grb)14, an adapter-type signalling protein that associates with the insulin receptor (IR). Adult male Grb14(-/-) mice displayed improved glucose tolerance, lower circulating insulin levels, and increased incorporation of glucose into glycogen in the liver and skeletal muscle. In ex vivo studies, insulin-induced 2-deoxyglucose uptake was enhanced in soleus muscle, but not in epididymal adipose tissue. These metabolic effects correlated with tissue-specific alterations in insulin signalling. In the liver, despite lower IR autophosphorylation, enhanced insulin-induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and activation of protein kinase B (PKB) was observed. In skeletal muscle, IR tyrosine phosphorylation was normal, but signalling via IRS-1 and PKB was increased. Finally, no effect of Grb14 ablation was observed on insulin signalling in white adipose tissue. These findings demonstrate that Grb14 functions in vivo as a tissue-specific modulator of insulin action, most likely via repression of IR-mediated IRS-1 tyrosine phosphorylation, and highlight this protein as a potential target for therapeutic intervention.  相似文献   

16.
Insulin stimulation of skeletal muscle results in rapid activation of protein kinase Cdelta (PKCdelta), which is associated with its tyrosine phosphorylation and physical association with insulin receptor (IR). The mechanisms underlying tyrosine phosphorylation of PKCdelta have not been determined. In this study, we investigated the possibility that the Src family of nonreceptor tyrosine kinases may be involved upstream insulin signaling. Studies were done on differentiated rat skeletal myotubes in primary culture. Insulin caused an immediate stimulation of Src and induced its physical association with both IR and PKCdelta. Inhibition of Src by treatment with the Src family inhibitor PP2 reduced insulin-stimulated Src-PKCdelta association, PKCdelta tyrosine phosphorylation and PKCdelta activation. PP2 inhibition of Src also decreased insulin-induced IR tyrosine phosphorylation, IR-PKCdelta association and association of Src with both PKCdelta and IR. Finally, inhibition of Src decreased insulin-induced glucose uptake. We conclude that insulin activates Src tyrosine kinase, which regulates PKCdelta activity. Thus, Src tyrosine kinase may play an important role in insulin-induced tyrosine phosphorylation of both IR and PKCdelta. Moreover, both Src and PKCdelta appear to be involved in IR activation and subsequent downstream signaling.  相似文献   

17.
Insulin receptor substrate (IRS) proteins are tyrosine phosphorylated and mediate multiple signals during activation of the receptors for insulin, insulin-like growth factor 1 (IGF-1), and various cytokines. In order to distinguish common and unique functions of IRS-1, IRS-2, and IRS-4, we expressed them individually in 32D myeloid progenitor cells containing the human insulin receptor (32D(IR)). Insulin promoted the association of Grb-2 with IRS-1 and IRS-4, whereas IRS-2 weakly bound Grb-2; consequently, IRS-1 and IRS-4 enhanced insulin-stimulated mitogen-activated protein kinase activity. During insulin stimulation, IRS-1 and IRS-2 strongly bound p85alpha/beta, which activated phosphatidylinositol (PI) 3-kinase, protein kinase B (PKB)/Akt, and p70(s6k), and promoted the phosphorylation of BAD. IRS-4 also promoted the activation of PKB/Akt and BAD phosphorylation during insulin stimulation; however, it weakly bound or activated p85-associated PI 3-kinase and failed to mediate the activation of p70(s6k). Insulin strongly inhibited apoptosis of interleukin-3 (IL-3)-deprived 32D(IR) cells expressing IRS-1 or IRS-2 but failed to inhibit apoptosis of cells expressing IRS-4. Consequently, 32D(IR) cells expressing IRS-4 proliferated slowly during insulin stimulation. Thus, the activation of PKB/Akt and BAD phosphorylation might not be sufficient to inhibit the apoptosis of IL-3-deprived 32D(IR) cells unless p85-associated PI 3-kinase or p70(s6k) are strongly activated.  相似文献   

18.
PKCdelta has been shown to be activated by insulin and to interact with insulin receptor and IRS. PKB(Akt) plays an important role in glucose transport and glycogen synthesis. In this study, we investigated the possibility that PKCdelta may be involved in insulin-induced activation of PKB. Studies were conducted on primary cultures of rat skeletal muscle. PKB was activated by insulin stimulation within 5min and reached a peak by 15-30min. Insulin also increased the physical association between PKCdelta with PKB and with PDK1. The insulin-induced PKCdelta-PKB association was PI3K dependent. PKB-PKCdelta association was accounted for by the involvement of PDK1. Overexpression of dominant negative PKCdelta abrogated insulin-induced association of PKCdelta with both PKB and PDK1. Blockade of PKCdelta also decreased insulin-induced Thr308 PKB phosphorylation and PKB translocation. Moreover, PKCdelta inhibition reduced insulin-induced GSK3 phosphorylation. The results indicate that insulin-activated PKCdelta interacts with PDK1 to regulate PKB.  相似文献   

19.
Tumor necrosis factor alpha (TNFalpha) interferes with insulin signaling in adipose tissue and may promote insulin resistance. Insulin binding to the insulin receptor (IR) triggers its autophosphorylation, resulting in phosphorylation of Shc and the downstream activation of p42/p44 extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2), which mediates insulin-induced proliferation in vascular smooth muscle cells (VSMC). Since insulin resistance is a risk factor for vascular disease, we examined the effects of TNFalpha on mitogenic signaling by insulin. In rat aortic VSMC, insulin induced rapid phosphorylation of the IR and Shc and caused a 5.3-fold increase in activated, phosphorylated ERK1/2 at 10 min. Insulin induced a biphasic ERK1/2 activation with a transient peak at 10 min and a sustained late phase after 2 h. Preincubation (30-120 min) with TNFalpha had no effect on insulin-induced IR phosphorylation. In contrast, TNFalpha transiently suppressed insulin-induced ERK1/2 activation. Insulin-induced phosphorylation of Shc was inhibited by TNFalpha in a similar pattern. Since mitogenic signaling by insulin in VSMC requires ERK1/2 activation, we examined the effect of TNFalpha on insulin-induced proliferation. Insulin alone induced a 3.4-fold increase in DNA synthesis, which TNFalpha inhibited by 48%. TNFalpha alone was not mitogenic. Inhibition of ERK1/2 activation with PD98059 also inhibited insulin-stimulated DNA synthesis by 57%. TNFalpha did not inhibit platelet-derived growth factor-induced ERK1/2 activation or DNA synthesis in VSMC. Thus, TNFalpha selectively interferes with insulin-induced mitogenic signaling by inhibiting the phosphorylation of Shc and the downstream activation of ERK1/2.  相似文献   

20.
Full activation of protein kinase B (PKB)/Akt requires phosphorylation on Thr-308 and Ser-473 by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser-473 kinase (S473K), respectively. Although PDK1 has been well characterized, the identification of the S473K remains controversial. A major PKB Ser-473 kinase activity was purified from the membrane fraction of HEK293 cells and found to be DNA-dependent protein kinase (DNA-PK). DNA-PK co-localized and associated with PKB at the plasma membrane. In vitro, DNA-PK phosphorylated PKB on Ser-473, resulting in a approximately 10-fold enhancement of PKB activity. Knockdown of DNA-PK by small interfering RNA inhibited Ser-473 phosphorylation induced by insulin and pervanadate. DNA-PK-deficient glioblastoma cells did not respond to insulin at the level of Ser-473 phosphorylation; this effect was restored by complementation with the human PRKDC gene. We conclude that DNA-PK is a long sought after kinase responsible for the Ser-473 phosphorylation step in the activation of PKB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号