首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TopBP1 serves as an activator of the ATR-ATRIP complex in response to the presence of incompletely replicated or damaged DNA. This process involves binding of ATR to the ATR-activating domain of TopBP1, which is located between BRCT domains VI and VII. TopBP1 displays increased binding to ATR-ATRIP in Xenopus egg extracts containing checkpoint-inducing DNA templates. We show that an N-terminal region of TopBP1 containing BRCT repeats I-II is essential for this checkpoint-stimulated binding of TopBP1 to ATR-ATRIP. The BRCT I-II region of TopBP1 also binds specifically to the Rad9-Hus1-Rad1 (9-1-1) complex in Xenopus egg extracts. This binding occurs via the C-terminal domain of Rad9 and depends upon phosphorylation of its Ser-373 residue. Egg extracts containing either a mutant of TopBP1 lacking the BRCT I-II repeats or a mutant of Rad9 with an alanine substitution at Ser-373 are defective in checkpoint regulation. Furthermore, an isolated C-terminal fragment from Rad9 is an effective inhibitor of checkpoint signaling in egg extracts. These findings suggest that interaction of the 9-1-1 complex with the BRCT I-II region of TopBP1 is necessary for binding of ATR-ATRIP to the ATR-activating domain of TopBP1 and the ensuing activation of ATR.  相似文献   

2.
ATR is a critical upstream regulator of checkpoint responses to incompletely replicated and damaged DNA. However, it had not been understood how the kinase activity of ATR is switched on during checkpoint responses. TopBP1 and its homologs are necessary for both DNA replication and checkpoint control. A recent report from this laboratory demonstrated that TopBP1 functions as an activator of ATR. It had been known that TopBP1 accumulates at sites of replicative stress and DNA damage. Thus, interaction of ATR with a critical protein at stalled replication forks and sites of DNA damage triggers its activation. This finding helps to explain how aberrant DNA structures in the genome induce ATR-dependent signaling processes.  相似文献   

3.
ATM (ataxia-telangiectasia mutated) is necessary for activation of Chk1 by ATR (ATM and Rad3-related) in response to double-stranded DNA breaks (DSBs) but not to DNA replication stress. TopBP1 has been identified as a direct activator of ATR. We show that ATM regulates Xenopus TopBP1 by phosphorylating Ser-1131 and thereby strongly enhancing association of TopBP1 with ATR. Xenopus egg extracts containing a mutant of TopBP1 that cannot be phosphorylated on Ser-1131 are defective in the ATR-dependent phosphorylation of Chk1 in response to DSBs but not to DNA replication stress. Thus, TopBP1 is critical for the ATM-dependent activation of ATR following production of DSBs in the genome.  相似文献   

4.
In vertebrates, ATM and ATR are critical regulators of checkpoint responses to damaged and incompletely replicated DNA. These checkpoint responses involve the activation of signaling pathways that inhibit the replication of chromosomes with DNA lesions. In this study, we describe the isolation of a cDNA encoding a full-length version of Xenopus ATM. Using antibodies against the regulatory domain of ATM, we have identified the essential replication protein Mcm2 as an ATM-binding protein in Xenopus egg extracts. Xenopus Mcm2 underwent phosphorylation at Ser(92) in response to the presence of double-stranded DNA breaks or DNA replication blocks in egg extracts. This phosphorylation involved both ATM and ATR, but the relative contribution of each kinase depended upon the checkpoint-inducing DNA signal. Furthermore, both ATM and ATR phosphorylated Mcm2 directly at Ser(92) in cell-free kinase assays. Immunodepletion of both ATM and ATR abrogated the checkpoint response that blocks chromosomal DNA replication in egg extracts containing double-stranded DNA breaks. These experiments indicate that ATM and ATR phosphorylate the functionally critical replication protein Mcm2 during both DNA damage and replication checkpoint responses in Xenopus egg extracts.  相似文献   

5.
TopBP1 is critical for both DNA replication and checkpoint regulation in vertebrate cells. In this study, we have identified Rif1 as a binding partner of TopBP1 in Xenopus egg extracts. In addition, Rif1 also interacts with both ATM and the Mre11-Rad50-Nbs1 (MRN) complex, which are key regulators of checkpoint responses to double-stranded DNA breaks (DSBs). Depletion of Rif1 from egg extracts compromises the activation of Chk1 in response to DSBs but not stalled replication forks. Removal of Rif1 also has a significant impact on the chromatin-binding behavior of key checkpoint proteins. In particular, binding of TopBP1, ATR and the MRN complex to chromatin containing DSBs is reduced in the absence of Rif1. Rif1 interacts with chromatin in a highly regulated and dynamic manner. In unperturbed egg extracts, the association of Rif1 with chromatin depends upon formation of replication forks. In the presence of DSBs, there is elevated accumulation of Rif1 on chromatin under conditions where the activation of ATM is suppressed. Taken together, these results suggest that Rif1 plays a dynamic role in the early steps of a checkpoint response to DSBs in the egg-extract system by promoting the correct accumulation of key regulators on the DNA.Key words: Rif1, TopBP1, ATR, Chk1, cell cycle control, checkpoint mechanisms, Xenopus egg extract  相似文献   

6.
The ATR kinase is a critical upstream component of a checkpoint pathway that responds to many forms of damaged and incompletely replicated DNA. Cellular processes such as DNA replication and repair are thought to convert these DNA lesions into a common DNA intermediate that activates this signaling pathway. Indeed, numerous studies have shown that two DNA structures formed during these processes – single-stranded DNA (ssDNA) and junctions between double-stranded DNA (dsDNA) and ssDNA – are important components of the ATR-activating structure. However, an unanswered question is whether primed ssDNA is sufficient for activation of the ATR response. We recently demonstrated that primed ssDNA is sufficient to induce a bona fide checkpoint response in Xenopus egg extracts. This is the first well-defined DNA structure capable of eliciting ATR activation. Using this structure, we examined the contribution of ds/ssDNA junctions and ssDNA to checkpoint activation. Our results indicate the context in which the checkpoint-activating structure is generated may contribute significantly to its signaling properties. Here we discuss the implications of our findings, in the context of other recent work in the field, on our understanding of checkpoint signaling.  相似文献   

7.
TopBP1-like proteins, which include Xenopus laevis Xmus101, are required for DNA replication and have been linked to replication checkpoint control. A direct role for TopBP1/Mus101 in checkpoint control has been difficult to prove, however, because of the requirement for replication in generating the DNA structures that activate the checkpoint. Checkpoint activation occurs in X. laevis egg extracts upon addition of an oligonucleotide duplex (AT70). We show that AT70 bypasses the requirement for replication in checkpoint activation. We take advantage of this replication-independent checkpoint system to determine the role of Xmus101 in the checkpoint. We find that Xmus101 is essential for AT70-mediated checkpoint signaling and that it functions to promote phosphorylation of Claspin bound Chk1 by the ataxia-telangiectasia and Rad-3-related (ATR) protein kinase. We also identify a separation-of-function mutant of Xmus101. In extracts expressing this mutant, replication of sperm chromatin occurs normally; however, the checkpoint response to stalled replication forks fails. These data demonstrate that Xmus101 functions directly during signal relay from ATR to Chk1.  相似文献   

8.
Rad17 is critical for the ATR-dependent activation of Chk1 during checkpoint responses. It is known that Rad17 loads the Rad9-Hus1-Rad1 (9-1-1) complex onto DNA. We show that Rad17 also mediates the interaction of 9-1-1 with the ATR-activating protein TopBP1 in Xenopus egg extracts. Studies with Rad17 mutants indicate that binding of ATP to Rad17 is essential for the association of 9-1-1 and TopBP1. Furthermore, hydrolysis of ATP by Rad17 is necessary for the loading of 9-1-1 onto DNA and the elevated, checkpoint-dependent accumulation of TopBP1 on chromatin. Significantly, a mutant 9-1-1 complex that cannot bind TopBP1 has a normal capacity to promote elevated accumulation of TopBP1 on chromatin. Taken together, we propose the following mechanism. First, Rad17 loads 9-1-1 onto DNA. Second, TopBP1 accumulates on chromatin in a manner that depends on both Rad17 and 9-1-1. Finally, 9-1-1 and TopBP1 dock in a Rad17-dependent manner before activation of Chk1.  相似文献   

9.
TopBP1 is critical for both DNA replication and checkpoint regulation in vertebrate cells. In this study, we have identified Rif1 as a binding partner of TopBP1 in Xenopus egg extracts. In addition, Rif1 also interacts with both ATM and the Mre11-Rad50-Nbs1 (MRN) complex, which are key regulators of checkpoint responses to double-stranded DNA breaks (DSBs). Depletion of Rif1 from egg extracts compromises the activation of Chk1 in response to DSBs but not stalled replication forks. Removal of Rif1 also has a significant impact on the chromatin-binding behavior of key checkpoint proteins. In particular, binding of TopBP1, ATR and the MRN complex to chromatin containing DSBs is reduced in the absence of Rif1. Rif1 interacts with chromatin in a highly regulated and dynamic manner. In unperturbed egg extracts, the association of Rif1 with chromatin depends upon formation of replication forks. In the presence of DSBs, there is elevated accumulation of Rif1 on chromatin under conditions where the activation of ATM is suppressed. Taken together, these results suggest that Rif1 plays a dynamic role in the early steps of a checkpoint response to DSBs in the egg-extract system by promoting the correct accumulation of key regulators on the DNA.  相似文献   

10.
ATR (ATM and Rad3-related) initiates a DNA damage signaling pathway in human cells upon DNA damage induced by UV and UV-mimetic agents and in response to inhibition of DNA replication. Genetic data with human cells and in vitro data with Xenopus egg extracts have led to the conclusion that the kinase activity of ATR toward the signal-transducing kinase Chk1 depends on the mediator protein Claspin. Here we have reconstituted a Claspin-mediated checkpoint system with purified human proteins. We find that the ATR-dependent phosphorylation of Chk1, but not p53, is strongly stimulated by Claspin. Similarly, DNA containing bulky base adducts stimulates ATR kinase activity, and Claspin acts synergistically with damaged DNA to increase phosphorylation of Chk1 by ATR. Mutations in putative phosphorylation sites in the Chk1-binding domain of Claspin abolish its ability to mediate ATR phosphorylation of Chk1. We also find that a fragment of Claspin containing the Chk1-binding domain together with a domain conserved in the yeast Mrc1 orthologs of Claspin is sufficient for its mediator activity. This in vitro system recapitulates essential components of the genetically defined ATR-signaling pathway.  相似文献   

11.
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase functions as a central node in the DNA damage response signaling network. The mechanisms by which ATR activity is amplified and/or maintained are not understood. Here we demonstrate that BRIT1/microcephalin (MCPH1), a human disease-related protein, is dispensable for the initiation but essential for the amplification of ATR signaling. BRIT1 interacts with and recruits topoisomerase-binding protein 1 (TopBP1), a key activator of ATR signaling, to the sites of DNA damage. Notably, replication stress-induced ataxia telangiectasia-mutated or ATR-dependent BRIT1 phosphorylation at Ser-322 facilitates efficient TopBP1 recruitment. These results reveal a mechanism that ensures the continuation of ATR-initiated DNA damage signaling. Our study uncovers a previously unknown regulatory axis of ATR signaling in maintaining genomic integrity, which may provide mechanistic insights into the perturbation of ATR signaling in human diseases such as neurodevelopmental defects and cancer.  相似文献   

12.
ATR, a critical regulator of DNA replication and damage checkpoint responses, possesses a binding partner called ATRIP. We have studied the functional properties of Xenopus ATR and ATRIP in incubations with purified components and in frog egg extracts. In purified systems, ATRIP associates with DNA in both RPA-dependent and RPA-independent manners, depending on the composition of the template. However, in egg extracts, only the RPA-dependent mode of binding to DNA can be detected. ATRIP adopts an oligomeric state in egg extracts that depends upon binding to ATR. In addition, ATR and ATRIP are mutually dependent on one another for stable binding to DNA in egg extracts. The ATR-dependent oligomerization of ATRIP does not require an intact coiled-coil domain in ATRIP and does not change in the presence of checkpoint-inducing DNA templates. Egg extracts containing a mutant of ATRIP that cannot bind to ATR are defective in the phosphorylation of Chk1. However, extracts containing mutants of ATRIP lacking stable DNA-binding and coiled-coil domains show no reduction in the phosphorylation of Chk1 in response to defined DNA templates. Furthermore, activation of Chk1 does not depend upon RPA under these conditions. These results suggest that ATRIP must associate with ATR in order for ATR to carry out the phosphorylation of Chk1 effectively. However, this function of ATRIP does not involve its ability to mediate the stable binding of ATR to defined checkpoint-inducing DNA templates in egg extracts, does not require an intact coiled-coil domain, and does not depend on RPA.  相似文献   

13.
In the presence of double-stranded DNA breaks (DSBs), the activation of ATR is achieved by the ability of ATM to phosphorylate TopBP1 on serine 1131, which leads to an enhancement of the interaction between ATR and TopBP1. In Xenopus egg extracts, the Mre11-Rad50-Nbs1 (MRN) complex is additionally required to bridge ATM and TopBP1 together. In this report, we show that CtIP, which is recruited to DSB-containing chromatin, interacts with both TopBP1 and Nbs1 in a damage-dependent manner. An N-terminal region containing the first two BRCT repeats of TopBP1 is essential for the interaction with CtIP. Furthermore, two distinct regions in the N-terminus of CtIP participate in establishing the association between CtIP and TopBP1. The first region includes two adjacent putative ATM/ATR phosphorylation sites on serines 273 and 275. Secondly, binding is diminished when an MRN-binding region spanning residues 25–48 is deleted, indicative of a role for the MRN complex in mediating this interaction. This was further evidenced by a decrease in the interaction between CtIP and TopBP1 in Nbs1-depleted extracts and a reciprocal decrease in the binding of Nbs1 to TopBP1 in the absence of CtIP, suggestive of the formation of a complex containing CtIP, TopBP1 and the MRN complex. When CtIP is immunodepleted from egg extracts, the activation of the response to DSBs is compromised and the levels of ATR, TopBP1 and Nbs1 on damaged chromatin are reduced. Thus, CtIP interacts with TopBP1 in a damage-stimulated, MRN-dependent manner during the activation of ATR in response to DSBs.Key words: CtIP, TopBP1, ATR, Nbs1, cell cycle control, checkpoint mechanisms, Xenopus egg extract  相似文献   

14.
The DNA damage checkpoint pathways sense and respond to DNA damage to ensure genomic stability. The ATR kinase is a central regulator of one such pathway and phosphorylates a number of proteins that have roles in cell cycle progression and DNA repair. Using the Xenopus egg extract system, we have investigated regulation of the Rad1/Hus1/Rad9 complex. We show here that phosphorylation of Rad1 and Hus1 occurs in an ATR- and TopBP1-dependent manner on T5 of Rad1 and S219 and T223 of Hus1. Mutation of these sites has no effect on the phosphorylation of Chk1 by ATR. Interestingly, phosphorylation of Rad1 is independent of Claspin and the Rad9 carboxy terminus, both of which are required for Chk1 phosphorylation. These data suggest that an active ATR signaling complex exists in the absence of the carboxy terminus of Rad9 and that this carboxy-terminal domain may be a specific requirement for Chk1 phosphorylation and not necessary for all ATR-mediated signaling events. Thus, Rad1 phosphorylation provides an alternate and early readout for the study of ATR activation.  相似文献   

15.
The checkpoint clamp Rad9–Hus1–Rad1 (9–1–1) interacts with TopBP1 via two casein kinase 2 (CK2)-phosphorylation sites, Ser-341 and Ser-387 in Rad9. While this interaction is known to be important for the activation of ATR-Chk1 pathway, how the interaction contributes to their accumulation at sites of DNA damage remains controversial. Here, we have studied the contribution of the 9–1–1/TopBP1 interaction to the assembly and activation of checkpoint proteins at damaged DNA. UV-irradiation enhanced association of Rad9 with chromatin and its localization to sites of DNA damage without a direct interaction with TopBP1. TopBP1, as well as RPA and Rad17 facilitated Rad9 recruitment to DNA damage sites. Similar to Rad9, TopBP1 also localized to sites of UV-induced DNA damage. The DNA damage-induced TopBP1 redistribution was delayed in cells expressing a TopBP1 binding-deficient Rad9 mutant. Pharmacological inhibition of ATR recapitulated the delayed accumulation of TopBP1 in the cells, suggesting that ATR activation will induce more efficient accumulation of TopBP1. Taken together, TopBP1 and Rad9 can be independently recruited to damaged DNA. Once recruited, a direct interaction of 9–1–1/TopBP1 occurs and induces ATR activation leading to further TopBP1 accumulation and amplification of the checkpoint signal. Thus, we propose a new positive feedback mechanism that is necessary for successful formation of the damage-sensing complex and DNA damage checkpoint signaling in human cells.  相似文献   

16.
17.
Polo-like kinase (Plk)1 is required for mitosis progression. However, although Plk1 is expressed throughout the cell cycle, its function during S-phase is unknown. Using Xenopus laevis egg extracts, we demonstrate that Plx1, the Xenopus orthologue of Plk1, is required for DNA replication in the presence of stalled replication forks induced by aphidicolin, etoposide or reduced levels of DNA-bound Mcm complexes. Plx1 binds to chromatin and suppresses the ATM/ATR-dependent intra-S-phase checkpoint that inhibits origin firing. This allows Cdc45 loading and derepression of DNA replication initiation. Checkpoint activation increases Plx1 binding to the Mcm complex through its Polo box domain. Plx1 recruitment to chromatin is independent of checkpoint mediators Tipin and Claspin. Instead, ATR-dependent phosphorylation of serine 92 of Mcm2 is required for the recruitment of Plx1 to chromatin and for the recovery of DNA replication under stress. Depletion of Plx1 leads to accumulation of chromosomal breakage that is prevented by the addition of recombinant Plx1. These data suggest that Plx1 promotes genome stability by regulating DNA replication under stressful conditions.  相似文献   

18.
Lee J  Kumagai A  Dunphy WG 《Molecular cell》2003,11(2):329-340
Claspin is required for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. We show here that Claspin associates with chromatin in a regulated manner during S phase. Binding of Claspin to chromatin depends on the pre-replication complex (pre-RC) and Cdc45 but not on replication protein A (RPA). These dependencies suggest that binding of Claspin occurs around the time of initial DNA unwinding at replication origins. By contrast, both ATR and Rad17 require RPA for association with DNA. Claspin, ATR, and Rad17 all bind to chromatin independently. These findings suggest that Claspin plays a role in monitoring DNA replication during S phase. Claspin, ATR, and Rad17 may collaborate in checkpoint regulation by detecting different aspects of a DNA replication fork.  相似文献   

19.
BACKGROUND: The DNA replication checkpoint ensures that mitosis is not initiated before DNA synthesis is completed. Recent studies using Xenopus extracts have demonstrated that activation of the replication checkpoint and phosphorylation of the Chk1 kinase are dependent on RNA primer synthesis by DNA polymerase alpha, and it has been suggested that the ATR kinase-so-called because it is related to the product of the gene that is mutated in ataxia telangiectasia (ATM) and to Rad3 kinase-may be an upstream component of this response. It has been difficult to test this hypothesis as an ATR-deficient system suitable for biochemical studies has not been available. RESULTS: We have cloned the Xenopus laevis homolog of ATR (XATR) and studied the function of the protein in Xenopus egg extracts. Using a chromatin-binding assay, we found that ATR associates with chromatin after initiation of replication, dissociates from chromatin upon completion of replication, and accumulates in the presence of aphidicolin, an inhibitor of DNA replication. Its association with chromatin was inhibited by treatment with actinomycin D, an inhibitor of RNA primase. There was an early rise in the activity of Cdc2-cyclin B in egg extracts depleted of ATR both in the presence or absence of aphidicolin. In addition, the premature mitosis observed upon depletion of ATR was accompanied by the loss of Chk1 phosphorylation. CONCLUSIONS: ATR is a replication-dependent chromatin-binding protein, and its association with chromatin is dependent on RNA synthesis by DNA polymerase alpha. Depletion of ATR leads to premature mitosis in the presence and absence of aphidicolin, indicating that ATR is required for the DNA replication checkpoint.  相似文献   

20.
The ataxia-telangiectasia mutated and RAD3-related (ATR) kinase initiates DNA damage signaling pathways in human cells after DNA damage such as that induced upon exposure to ultraviolet light by phosphorylating many effector proteins including the checkpoint kinase Chk1. The conventional view of ATR activation involves a universal signal consisting of genomic regions of replication protein A-covered single-stranded DNA. However, there are some indications that the ATR-mediated checkpoint can be activated by other mechanisms. Here, using the well defined Escherichia coli lac repressor/operator system, we have found that directly tethering the ATR activator topoisomerase IIβ-binding protein 1 (TopBP1) to DNA is sufficient to induce ATR phosphorylation of Chk1 in an in vitro system as well as in vivo in mammalian cells. In addition, we find synergistic activation of ATR phosphorylation of Chk1 when the mediator protein Claspin is also tethered to the DNA with TopBP1. Together, these findings indicate that crowding of checkpoint mediator proteins on DNA is sufficient to activate the ATR kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号