首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

2.
Postnatal development changes in mechanisms of synaptosomal amino acid transport have been studied in rat cerebral cortex. Specific uptake of radiolabeled l-serine was examined and compared with that of radiolabeled GABA using synaptosomes-enriched fractions freshly prepared from cerebral cortex at different postnatal days from the birth to young adulthood. The preparations were incubated with 10 nM of [3H]l-serine and 10 nM of [3H]-GABA in either the presence or absence of NaCl, KCl or choline chloride, at 2 and 30 °C, for different periods up to 30 min. The uptake of [3H]l-serine was temperature dependent in synaptosomal fractions prepared from cerebral cortex of rats in postnatal days 5, 7, 13 and 21, but stronger dependence was observed in adult brain, irrespective of the presence of Na+, K+ or choline ions. At all postnatal ages studied, [3H]-GABA uptake showed a high activity in the presence of Na+ ions and at 30 °C. The values of Km were 90–489 μM in l-serine uptake. However, in the uptake of GABA the values of Km were 80–150 μM. The highest values of Vmax were obtained at 5 and 21 postnatal days for both transport systems. These results indicate that the uptake of l-serine and GABA are regulated differentially during postnatal development.  相似文献   

3.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

4.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

5.
Cystathionine β-synthase (CBS) catalyzes the pyridoxal-5′-phosphate-dependent condensation of l-serine and l-homocysteine to form l-cystathionine in the first step of the transsulfuration pathway. Although effective expression systems for recombinant human CBS (hCBS) have been developed, they require multiple chromatographic steps as well as proteolytic cleavage to remove the fusion partner. Therefore, a series of five expression constructs, each incorporating a 6-His tag, were developed to enable the efficient purification of hCBS via immobilized metal ion affinity chromatography. Two of the constructs express hCBS in fusion with a protein partner, while the others bear only the affinity tag. The addition of an amino-terminal, 6-His tag, in the absence of a protein fusion partner and in the absence or presence of a protease-cleavable linker, was found to be sufficient for the purification of soluble hCBS and resulted in enzyme with 86–91% heme saturation and with activity similar to that reported for other hCBS expression constructs. The continuous assay for l-Cth production, employing cystathionine β-lyase and l-lactate dehydrogenase as coupling enzymes, was employed here for the first time to determine the steady-state kinetic parameters of hCBS, via global analysis, and revealed previously unreported substrate inhibition by l-Hcys (Kil-Hcys = 2.1 ± 0.2 mM). The kinetic parameters for the hCBS-catalyzed hydrolysis of l-Cth to l-Ser and l-Hcys were also determined and the kcat/Kml-Cth of this reaction is only 2-fold lower than the kcat/Kml-SER of the physiological, condensation reaction.  相似文献   

6.
The soft rot fungus Penicillium purpurogenum secretes a wide variety of xylanolytic enzymes to the medium, among them three α-l-arabinofuranosidases. This work refers to arabinofuranosidase 2 (ABF 2). This enzyme was purified to homogeneity and characterized; it is a glycosylated monomer with a molecular weight of 70 000 and an isoelectric point of 5.3. When assayed with p-nitrophenyl α-l-arabinofuranoside (pNPAra) the enzyme followed Michaelis–Menten kinetics with a KM of 0.098 mm. The optimum pH is 5 and the optimal temperature 60 °C. ABF 2 showed weak activity on natural polymeric substrates, such as sugar beet arabinan, debranched arabinan, and arabinoxylan. These results, together with its low KM (pNPAra) and its activity towards short arabinooligosaccharides, suggest that the enzyme belongs to the exo α-l-arabinosyl hydrolases not active on polymers. The abf2 gene and its cDNA were sequenced, and the gene was found to possess seven introns. The mature protein is 618 amino acids long with a calculated molecular weight of 67 212. Amino acid sequence alignments show that the enzyme belongs to family 51 of the glycosyl hydrolases, although it differs in some properties from other enzymes of this family.  相似文献   

7.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   

8.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

9.
An aerobic bacterium was isolated from activated sludge in a medium containing l-glutamate-N,N-diacetate (l-GLDA) as sole carbon and energy source. The isolate was identified as a Rhizobium radiobacter species. Besides l-GLDA, the strain utilized nitrilotriacetate (NTA) and proposed intermediates in l-GLDA metabolism such as glyoxylate and l-glutamate. l-GLDA-grown cells oxidized l-GLDA, l-glutamate but not iminodiacetate (IDA), and trans-ketoglutaconate, indicating removal of a carboxymethyl group as an initial degradation reaction. The removal of the first carboxymethyl group of l-GLDA is catalyzed by an NADH-dependent mono-oxygenase. The oxidative deamination of l-glutamate by a dehydrogenase resulting in the formation of oxoglutarate was also detected in cell-free extracts of R. radiobacter sp. A pathway for the metabolism of l-GLDA R. radiobacter sp. is proposed: First, l-GLDA leads to l-glutamate-N-monoacetate (l-GLMA) which in turn leads to l-glutamate. Then, l-glutamate leads to oxoglutarate, an intermediate of the TCA cycle.  相似文献   

10.
Aspergillus niger is moderately susceptible to inhibition by phosphinothricin (PPT)—a potent inhibitor of glutamine synthetase. This growth inhibition was relieved by l-glutamine. PPT inhibited A. niger glutamine synthetase in vitro (KI, 54 μM) and the inhibition was competitive with l-glutamate. The bar gene, imparting resistance to PPT, was successfully exploited as a dominant marker to transform this fungus. Very high PPT concentrations were required in the overlay for selection. Apart from bar transformants, colonies spontaneously resistant to PPT were frequently encountered on selection media. Reasons for such spontaneous resistance, albeit of moderate growth phenotype, were sought using one such isolate (SRPPT). The SRPPT isolate showed a 2–3-fold decrease in its glutamate uptake rate. Elevated external glutamate levels further suppressed the PPT-induced growth inhibition. Cellular entry of PPT could be through the l-glutamate uptake system thereby accounting for the observed spontaneous resistant phenotype. These results were useful in the fine-tuning of bar-selection in A. niger.  相似文献   

11.
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.  相似文献   

12.
Pyrrolothiazolate formed by the Maillard reaction between l-cysteine and d-glucose has a pyrrolothiazole skeleton as a chromophore. We searched for a Maillard pigment having a pyrrolooxazole skeleton formed from l-threonine or l-serine instead of l-cysteine in the presence of d-glucose. As a result, two novel yellow pigments, named pyrrolooxazolates A and B, were isolated from model solutions of the Maillard reaction containing l-threonine and d-glucose, and l-serine and d-glucose, respectively, and identified as (2R,3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-2,5,7a-trimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid and (3S,7aS)-2,3,7,7a-tetrahydro-6-hydroxy-5,7a-dimethyl-7-oxo-pyrrolo[2,1-b]oxazole-3-calboxylic acid by instrumental analyses. These compounds were pyrrolooxazole derivatives carrying a carboxy group, and showed the absorption maxima at 300–360 nm under acidic and neutral conditions and at 320–390 nm under alkaline conditions.  相似文献   

13.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

14.
A series of N-(β-d-glucopyranosyl)amides 5di were synthesized by PMe3 mediated Staudinger reaction of O-peracetylated β-d-glucopyranosyl azide (1) followed by acylation with carboxylic acids 3di and subsequent Zemplén deacetylation. The new compounds were tested for their inhibitory activity against rabbit muscle glycogen phosphorylase and the structure–activity relationships of these compounds are also discussed in this paper.  相似文献   

15.
Proteases from pyloric caeca extract of three fish species including brownstripe red snapper (Lutjanus vitta), bigeye snapper (Priacanthus tayenus) and threadfin bream (Nemipterus marginatus) were comparatively studied. The extracts from bigeye snapper and threadfin bream exhibited the highest hydrolytic activities toward casein, α-N-benzoyl-dl-arginine-p-nitroanilide and α-N-ρ-tosyl-l-arginine methyl ester at pH 8.0 and 60 °C and pH 8.5 and 55 °C, respectively. The extract of brownstripe red snapper showed the optimal pH and temperature of 8.0 and 60 °C with all substrates used except the optimal temperature was 65 °C when casein was used. All proteases were strongly inhibited by soybean trypsin inhibitor (SBTI) and N-ρ-tosyl-l-lysine chloromethylketone (TLCK) and partially inhibited by N-tosyl-l-phenylalanine chloromethylketone for all substrates tested, suggesting that trypsin-like proteases were the major enzymes. Substrate-gel activity staining of 40–60% ammonium sulfate (AS) fraction revealed that major activity bands were observed with molecular mass of 24, 22 and 20 kDa for brownstripe red snapper, bigeye snapper and threadfin bream, respectively. Those activity bands were partially inhibited by SBTI and TLCK. AS fraction was further used to produce gelatin hydrolysate from the skin of brownstripe red snapper with different degrees of hydrolysis (DH). Hydrolysate with DH of 15% exhibited the highest DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (p < 0.05). Therefore, the extract from pyloric caeca could be used to produce the gelatin hydrolysates possessing antioxidative activities.  相似文献   

16.
Continuing our research on the development of nucleopeptides as ODN analogs for biomedical and bioengineering applications, here we report the synthesis and the chemical–physical characterization of a homoadenine hexamer based on a l-diaminobutyric acid (l-DABA) backbone (dabPNA), and its binding studies with a complementary aegPNA. We demonstrated by CD and UV experiments that the l-dabPNA binds the aegPNA forming a complex with good thermal stability, that we identified as a left-handed triplex.  相似文献   

17.
Sulfated polysaccharides were localized in the cuticle, cortex and medulla of the gametophyte thallus, being more concentrated in the intercellular matrix than in the cell walls. During the water extraction sequence, a small percentage of galactan sulfates (5.1% of dry seaweed) with average low Mr (6–11.4 kDa) were extracted at room temperature without disturbing the cellular arrangement, while sulfated galactans of average medium Mr (18–45 kDa) were obtained by further hot-water extractions (52.4% of dry seaweed), with diorganization of the tissue. The residue (40.0% of dry seaweed) still contained carrageenan-type (major) and agaran-type (minor) galactans. Part of these galactans was extracted with 8.4% LiCl solution in DMSO, from which “pure” κ/ι-carrageenans were isolated.Carrageenans and agarans were extracted in a ratio 1:0.5, showing the highest amount of agaran-structures for a carrageenophyte. The galactans comprise alternating 4-sulfated (major) and non-sulfated (minor) 3-linked β-d-galactopyranose units, and 4-linked α-galactopyranose units with the following substitutions: (i) non-sulfated and 2-sulfated 3,6-anhydro-α-d-galactopyranose residues in the carrageenan-structures, which belong to the κ-family (κ/ι-carrageenans); (ii) 3-sulfated α-l-galactopyranose units and 2-sulfated 3,6-anhydro-α-l-galactopyranose residues in the agaran-structures.Alkaline treatment and alkaline dialysis of the main extracts gave “pure” κ/ι-carrageenans, showing that carrageenan molecules are extracted together with low Mr agarans or agaran-dl-hybrids.  相似文献   

18.
In this study, the modulating effect of l-carnitine on tert-butyl-hydroperoxide-induced DNA damage was compared with that of mannitol, a well known scavenger of hydroxyl radicals, both in normal and Ataxia telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines established from A. telangiectasia (A-T) patients. The alkaline version of the comet assay was employed to measure the frequency of single-strand breaks (SSBs) and alkali-labile sites induced by t-butyl-OOH immediately after treatment and at different recovery times in normal and A-T cell lines, with and without pre-treatment with l-carnitine. In addition, both the yield of induced chromosomal damage and the effect on cell proliferation were evaluated. Our results show that pre-treatment of cells with l-carnitine produced an enhancement of the rate and extent of DNA repair in A-T cell lines at early recovery time; furthermore, in samples pre-treated with l-carnitine a reduction of all types of chromosomal aberration was observed, both in A-T and in wild-type cell lines. The reducing effect of l-carnitine pre-treatment on oxidative DNA damage was more prominent than that of pre-treatment with mannitol. In conclusion, we demonstrated a protective effect of l-carnitine on oxidative stress-induced DNA damage in A-T cells, suggesting its possible role in future pharmacological applications in A-T therapy.  相似文献   

19.
20.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号