首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jia T  Jiang ZX  Wang K  Li ZY 《Biophysical chemistry》2006,119(3):295-302
The binding properties of cationic porphyrin-phenylpiperazine hybrids to calf thymus (CT) DNA were investigated by using absorption, fluorescence and circular dichroism (CD) spectra, and the apparent affinity binding constants (K(app)) of the porphyrins for CT DNA were determined by using a competition method with ethidium bromide (EB). Intercalation of porphyrin into CT DNA occurred when two phenylpiperazines were introduced at cis position onto the periphery of cationic porphyrin. The photocleavages of pBR322 plasmid DNA by the porphyrins were consistent with the values of K(app). With [porphyrin]/[DNA base pairs] ratio increased, the binding mode tended to be outside binding, and the cleavage abilities of the porphyrins varied. In the presence of sodium azide, a quencher of 1O2, the cleavage of DNA by the porphyrin of intercalation was less inhibited.  相似文献   

2.
Zhao P  Xu LC  Huang JW  Zheng KC  Liu J  Yu HC  Ji LN 《Biophysical chemistry》2008,134(1-2):72-83
A novel cationic porphyrin-anthraquinone (Por-AQ) hybrid has been synthesized and characterized. Using the combination of absorption titration, fluorescence spectra, circular dichroism (CD) as well as viscosity measurements, the binding properties of the hybrid to calf thymus (CT) DNA have been investigated compared with its parent porphyrin. The experimental results show that at low [Por]/[DNA] ratios, the parent porphyrin binds to DNA in an intercalative mode while the hybrid binds in a combined mode of outside binding (for porphyrin moiety) and partial intercalation (for anthraquinone). Ethidium bromide (EB) competition experiment determined the binding affinity constants (K(app)) of the compounds for CT DNA. Theoretical calculational results applying the density functional theory (DFT) can explain the different DNA binding behaviors reasonably. (1)O(2) was suggested to be the reactive species responsible for the DNA photocleavage of porphyrin moieties in both two compounds. The wavelength-depending cleavage activities of the compounds were also investigated.  相似文献   

3.
It is widely accepted that the pharmacological activities of anthracyclines antitumor agents express when the quinone-containing chromophore intercalates into base pairs of the duplex DNA. We have successfully synthesized and investigated the DNA-interactions of hybrids composed with quinone chromophore and cationic porphyrin. Herein, a clinic anticancer drug, daunomycin, is introduced to the porphyrin hybrids through different lengths of amide alkyl linkages, and their interactions and cleavage to DNA were studied compared with the previous porphyrin-quinone hybrids. Spectral results and the determined binding affinity constants (Kb) show that the attachment of daunomycin to porphyrin could improve the DNA-binding and photocleaving abilities. The porphyrin-daunomycin hybrids may find useful employment in investigating the ligand-DNA interaction.  相似文献   

4.
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species.  相似文献   

5.
The porphyrin, meso-5-(pentafluorophenyl)-10, 15, 20-tris(4-pyridyl)porphyrin has been used to synthesize two new metalloporphyrin complexes. Insertion of copper(II) into the porphyrin center gives the copper(II) porphyrin. Coordination of three [Ru(bipy)2Cl]+ moieties (where bipy = 2,2′-bipyridine) to the pyridyl nitrogens of the copper(II) porphyrin gives the target complex. Electronic transitions associated with the copper(II) porphyrin and the triruthenium copper(II) porphyrin include an intense Soret band and a less intense Q-band in the visible region of the spectrum. An intense π-π∗ transition in the UV region associated with the bipyridyl groups and a metal to ligand charge transfer (MLCT) band appearing as a shoulder to the Soret band are observed for the ruthenated copper(II) porphyrin. Electrochemical properties associated with the multimetallic complex include a redox couple in the cathodic region with E1/2 = −0.86 V versus Ag/AgCl attributed to the porphyrin and a redox couple in the anodic region E1/2 = 0.88 V versus Ag/AgCl due to the RuIII/II couple. DNA titrations indicate the triruthenium copper(II) porphyrin interacts with DNA potentially through a groove binding mechanism. Irradiation of aqueous solutions of the target complex and supercoiled DNA at a 10:1 base pair to complex ratio with visible light above 400 nm indicates that the complex causes nicking of the DNA helix.  相似文献   

6.
In order to explore the biological potential, some synthesized triazolylnucleosides were evaluated for their antibacterial, tyrosinase and DNA photocleavage activities. Triazolylnucleosides (5–12) were screened against Staphylococcus aureus (ATCC 6538), gram-positive and Escherichia coli (ATCC 10536), gram-negative bacterial strains. Among the series, compound 9 exhibited a significant level of antibacterial activity against both strains at higher concentration in reference to the standard drug, Levofloxacin. Tyrosinase activity and inhibition of these compounds were also studied, and it has been found that compounds 8 and 11 displayed more than 50% inhibitory activity. In addition, six compounds (7–12) were evaluated for their DNA photocleavage activity. The compounds 8 and 12 exhibited excellent DNA photocleavage activity at a concentration of 10 μg and may be used as template for antitumor drugs in the future.  相似文献   

7.
Abstract

Three new Ru(II) polypyridyl complexes [Ru(phen)2CIIP]2+ (1) {CIIP = 2-(5-Chloro-3a H-Isoindol-3-yl)-1H-Imidazo[4,5-f][1, 10]phenantholine} (phen = 1, 10 phenanthroline), [Ru(bpy)2CIIP]2+ (2) (bpy = 2, 2′ bipyridine) and [Ru(dmb)2CIIP]2+ (3) (dmb = 4, 4′-dimethyl 2, 2′ bipyridine) were synthesized and characterized by different spectral methods. The DNA-binding behavior of these complexes was investigated by absorption, emission spectroscopic titration and viscosity measurements, indicating that these three complexes bind to CT-DNA in an intercalative mode, but binding affinities of these complexes were different. The DNA-binding constants Kb of complexes 1, 2 and 3 were calculated in the order of 106. All three complexes cleave pBR322 DNA in photoactivated cleavage studies and exhibit good antimicrobial activity. Anticancer activity of these Ru(II) complexes was evaluated in MCF7 cells. Cytotoxicity by MTT assay showed growth inhibition in a dose dependent manner. Cell cycle analysis by flow cytometry data showed an increase in Sub G1 population. Annexin V FITC/PI staining confirms that these complexes cause cell death by the induction of apoptosis.  相似文献   

8.
Due to the key role of DNA in cell life and pathological processes, the design of specific chemical nucleases, DNA probes and alkylating agents is an important research area for the development of new therapeutic agents and tools in Biochemistry. Hence, the interaction of small molecules with DNA has attracted in particular a great deal of attention.The aim of this study was to investigate the ability of [Cr(phen)2(dppz)]3+ to associate with DNA and to characterize it as photocleavage reagent for Photodynamic Therapy (PDT).Chromium(III) complex [Cr(phen)2(dppz)]3+, (dppz = dipyridophenazine, phen = 1,10-phenanthroline), where dppz is a planar bidentate ligand with an extended π system, has been found to bind strongly to double strand oligonucleotides (ds-oligo) and plasmid DNA with intrinsic DNA binding constants, Kb, of (3.9 ± 0.3) × 105 M1 and (1.1 ± 0.1) × 105 M1, respectively. The binding properties to DNA were investigated by UV-visible (UV-Vis) absorption spectroscopy and electrophoretic studies. UV-Vis absorption data provide clearly that the chromium(III) complex interacts with DNA intercalatively. Competitive binding experiments show that the enhancement in the emission intensity of ethidium bromide (EthBr) in the presence of DNA was quenched by [Cr(phen)2(dppz)]3+, indicating that the Cr(III) complex displaces EthBr from its binding site in plasmid DNA. Moreover, [Cr(phen)2(dppz)]3+, non-covalently bound to DNA, promotes the photocleavage of plasmid DNA under 457 nm irradiation. We also found that the irradiated Cr(III)-plasmid DNA association is able to impair the transforming capacity of bacteria. These results provide evidence confirming the responsible and essential role of the excited state of [Cr(phen)2(dppz)]3+ for damaging the DNA structure. The combination of DNA, [Cr(phen)2(dppz)]3+ and light, is necessary to induce damage. In addition, assays of the photosensitization of transformed bacterial suspensions suggest that Escherichia coli may be photoinactivated by irradiation in the presence of [Cr(phen)2(dppz)]3+. In sum, our results allow us to postulate the [Cr(phen)2(dppz)]3+ complex as a very attractive candidate for DNA photocleavage with potential applications in Photodynamic Therapy (PDT).  相似文献   

9.
Two new ruthenium complexes [Ru(bpy)2(mitatp)](ClO4)21 and [Ru(bpy)2(nitatp)](ClO4)22 (bpy = 2,2′-bipyridine, mitatp = 5-methoxy-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene, nitatp = 5-nitro-isatino[1,2-b]-1,4,8,9-tetraazatriphenylene) have been synthesized and characterized by elemental analysis, 1H NMR, mass spectrometry and cyclic voltammetry. Spectroscopic and viscosity measurements proved that the two Ru(II) complexes intercalate DNA with larger binding constants than that of [Ru(bpy)2(dppz)]2+ (dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and possess the excited lifetime of microsecond scale upon binding to DNA. Both complexes can efficiently photocleave pBR322 DNA in vitro under irradiation. Singlet oxygen (1O2) was proved to contribute to the DNA photocleavage process, the 1O2 quantum yields was determined to be 0.43 and 0.36 for 1 and 2, respectively. Moreover, a photoinduced electron transfer mechanism was also found to be involved in the DNA cleavage process.  相似文献   

10.
Shi S  Yao TM  Geng XT  Jiang LF  Liu J  Yang QY  Ji LN 《Chirality》2009,21(2):276-283
New chiral Ru(II) complexes delta and lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) [(bpy = 2,2'-bipyridine; pyip = (2-(1-pyrenyl)-1H-imidazo[4,5-f] [1,10]phenanthroline] were synthesized and characterized by elemental analysis, (1)H NMR, ESI-MS, IR, and CD spectra. Their DNA-binding properties were studied by means of UV-vis, emission spectra, CD spectra and viscosity measurements. A subtle but detectable difference was observed in the interaction of both enantiomer with CT-DNA. Spectroscopy experiments indicated that each of these complexes could interact with the DNA. The DNA-binding of the Delta-enantiomer was stronger than that of Lambda-enantiomer. DNA-viscosity experiments provided evidence that both Delta- and Lambda-[Ru(bpy)(2)(pyip)](PF(6))(2) bound to DNA by intercalation. At the same time, the DNA-photocleavage properties of the complexes were investigated too. Under irradiation with UV light, Ru(II) complexes showed different efficiency of cleaving DNA.  相似文献   

11.
The interaction between the broad-spectrum antimicrobial agent, polyhexamethylene biguanide (PHMB), and various nucleic acids was investigated. Titration of either single- or double-stranded 100-bp DNA, or mixed-molecular weight marker DNA, or tRNA with PHMB caused precipitation of a complex between nucleic acid and PHMB in which the nucleotide/biguanide ratio was always close to unity. Binding of PHMB was highly cooperative, with apparent Hill coefficients 10.3-14.6. When a fluorescent derivative of PHMB was titrated with increasing amounts of nucleic acid, all four forms of nucleic acid caused strong polarisation of fluorescence, demonstrating the association with PHMB. The intensity and broad-spectrum binding of PHMB to all forms of nucleic acid has significant implications for the mechanism of action of this biocide.  相似文献   

12.
A new porphyrin 5,15-(4-pyridyl)-10,20-(pentafluorophenyl)porphyrin (H2DPDPFPP) and its diruthenium(II) analog ([trans-H2(DPDPFPP)Ru2(bipy)4Cl2(PF6)2]) have been synthesized and characterized. Electronic transitions associated with the porphyrin consist of an intense Soret band near 400 nm and four Q-bands from 500 nm to 650 nm. Coordination of two [Ru(bipy)2Cl]+ groups, where bipy = 2,2′-bipyridine, to the pyridyl nitrogens of the porphyrin give additional electronic transitions associated with the bipy orbitals and metal to ligand charge transfer (MLCT) transitions associated with the Ru(II) and bipy orbitals. Reversible redox couples in the cathodic region occur at E1/2 = −0.74 V and −1.21 V versus Ag/AgCl reference which are shifted to more positive potentials when the porphyrin is coordinated to the Ru(II) groups. Gel electrophoresis studies with linearized pUC18 indicate an interaction between the metallated porphyrin and DNA which is confirmed by UV/Vis titrations with calf thymus (CT) DNA giving a binding constant of ca. 105 M−1. When buffered, pH 7, solutions of circular plasmid DNA containing the ruthenium porphyrin are irradiated with a 50 W tungsten lamp cleavage of the DNA is observed.  相似文献   

13.
Three binuclear Ru(II) complexes with two [Ru(bpy)2(pip)]2+-based subunits {where bpy = 2,2′-bipyridine and pip = 2-phenylimidazo[4,5-f][1,10]phenanthroline} being linked by varied lengths of flexible bridges, were synthesized and characterized by 1H NMR, elemental analysis, UV-visible (UV-vis) and photoluminescence spectroscopy. The structures of the three complexes were optimized by density functional theory calculations. The interaction of the complexes with calf thymus DNA was investigated by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4−, DNA competitive binding with ethidium bromide, DNA melting experiments, and viscosity measurements. The experimental results indicated that the three complexes bound to the DNA most probably in a threading intercalation binding mode with high DNA binding constant values three orders of magnitude greater than the DNA binding constant value reported for proven DNA intercalator, mononuclear counterpart [Ru(bpy)2(p-mopip)]2+ {p-mopip = 2-(4-methoxylphenyl)imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

14.
A novel asymmetric bidentate ligand, 2-(pyrazin-2-yl)naphthoimidazole (PZNI), and its Ru(II) complexes [Ru(bpy)2(PZNI)]2+ (1) and [Ru(phen)2(PZNI)]2+ (2) have been synthesized and characterized by elemental analysis, mass spectra, 1H NMR, and electronic spectroscopy. The electrochemical behaviors of the novel complexes were studied by cyclic voltammetry. The DNA-binding properties of the complexes were investigated by spectroscopic methods and viscosity measurements. The experimental results indicate that the complexes 1 and 2 interact with calf thymus DNA by intercalative mode via the terminal naphthyl ring into the base pairs of DNA. The two Ru(II) complexes have also been found to promote the cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II upon irradiation.  相似文献   

15.
A series of artificial peptides bearing cationic functional groups with different side chain lengths were designed, and their ability to increase the thermal stability of nucleic acid duplexes was investigated. The peptides with amino groups selectively increased the stability of RNA/RNA duplexes, and a relationship between the side chain length and the melting temperature (Tm) of the peptide–RNA complexes was observed. On the other hand, while peptides with guanidino groups exhibited a similar tendency with respect to the peptide structure and thermal stability of RNA/RNA duplexes, those with longer side chain lengths, such as l-2-amino-4-guanidinobutyric acid (Agb) or l-arginine (Arg) oligomers, stabilized both RNA/RNA and DNA/DNA duplexes, and those with shorter side chain lengths exhibited a higher ability to selectively stabilize RNA/RNA duplexes. In addition, peptides were designed with different levels of flexibility by introducing glycine (Gly) residues into the l-2-amino-3-guanidinopropionic acid (Agp) oligomers. It was found that insertion of Gly did not affect the thermal stability of the peptide–RNA complexes, but an alternate arrangement of Gly and Agp apparently decreased the thermal stability. Therefore, in the Agp oligomer, consecutive Agp sequences are essential for increasing the stability of RNA/RNA duplexes.  相似文献   

16.
17.
A series of novel cationic lipids based on 1,4,7-triazacyclononane (TACN) with different hydrophobic chains were synthesized via the formation of a biodegradable ester bond. These lipids were found to have good buffering capacity at the pH range of 5.0-6.5, which is similar to that of the acidic endosomal compartments. The liposomes formed from these lipids and DOPE could condense DNA into nanoparticles with proper sizes. In vitro experiments showed moderate to good gene transfection efficiency of the formed lipoplexes. The structure-activity relationships of this type of lipids were discussed.  相似文献   

18.
A rapidly sedimenting DNA-protein complex was isolated from nuclear lysates in 2 M NaCl and characterized with regard to its polypeptide composition and the DNA-binding properties of the purified proteins. The complex consists of the nuclear matrix with attached DNA. Electrophoresis in SDS-polyacrylamide gels revealed two major and five minor polypeptide bands, mainly in the 60 to 75 kDa molecular weight region. The DNA-matrix complex dissociated into free DNA and proteins in the presence of 2 M NaCl and 5 M urea. The proteins could be purified by chromatography on hydroxyapatite and showed a strong tendency to reassociate at 0.15 M NaCl concentration in the absence of urea. DNA was bound to the reassociated proteins at 0.15 M NaCl concentration. Part of the DNA-protein complex was stable at 1 M NaCl concentration. The binding appeared to be random with regard to the DNA sequence.  相似文献   

19.
20.
Gene and synthetic drug-delivery vectors have been developed and characterized to treat several genetic diseases and cancers. Our study aims at characterizing cationic liposomes containing the zwitterionic phospholipid DMPC and the cationic lipid DOTAP as well as their interactions with two types of DNA and a new class of antineoplastic agents derived from arylchloroethylureas (CEU). Results obtained using FTIR spectroscopy as well as 31P and 2H NMR indicate that DMPC and DOTAP form cationic liposomes in a highly disordered fluid phase at a molar ratio of 1:1. In addition, the FTIR results indicate that the presence of DNA or CEUs within the liposomes does not significantly affect the conformational order of both the DMPC and DOTAP acyl chains. Our results therefore provide a detailed characterization of complexes between cationic liposomes and both DNA and drugs and indicate that these complexes are stable and fluid assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号