首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G Brady  A Funk  J Mattern  G Schütz    R Brown 《The EMBO journal》1985,4(10):2583-2588
Mouse Lewis Lung tumor DNA was ligated to a cosmid containing a geneticin (G418)/kanamycin resistance gene and transferred into NIH3T3 cells. Recipient cells were first selected for geneticin resistance and subsequently for their ability to grow as a tumour when injected into nude mice. By repeating this transfection procedure with DNA from resultant tumours, geneticin-resistant NIH3T3 cells were obtained which were tumorigenic and contained approximately 1-5 copies of the transferred cosmid. The functional oncogene was cloned by preparing cosmid libraries of third round tumour DNAs, using a cosmid which does not contain a kanamycin resistance gene. Due to the original linkage of the oncogene with the cosmid containing the kanamycin resistance gene, a series of kanamycin-resistant cosmids were isolated, five of which contained an active oncogene. Subsequent analysis showed that the oncogene present was highly related to the human N-ras gene. Using a DNA probe from the MLL N-ras gene, a non-transforming counterpart was isolated from mouse liver DNA. A comparison between the two N-ras genes showed that a mutation at the amino acid position corresponding to 61 in the human gene is responsible for transforming activity of the rescued gene.  相似文献   

3.
4.
5.
DNAs isolated from a variety of human tumor cell lines as well as from naturally occurring human carcinomas and sarcomas were shown to induce morphologic transformation upon transfection into NIH/3T3 cells. All tested transformants contained human DNA sequences, some of which specifically cosegregated with the malignant phenotype in additional cycles of transfection. Southern blot analysis of second cycle transformants derived from T24 human bladder carcinoma cells showed the presence of a single 15 kbp EcoRI fragment of human DNA. These sequences were molecularly cloned utilizing λ Charon 9A as the cloning vector. The resulting recombinant DNA molecule, designated λ T24-15A, was shown to contain an internal 6.6 kbp Bam HI fragment of human DNA that transformed NIH/3T3 fibroblasts with a specific activity of 5 × 104 focus forming units per picomol. These results indicate that we have moleculary cloned an oncogene present in T24 bladder carcinoma cells. Comparison of molecular clones containing the T24 oncogene and its normal homologue did not reveal biochemical differences that helped to explain the malignant properties of this oncogene. Finally, we report preliminary results indicating that the T24 bladder carcimoma oncogene is highly related to the transforming gene of BALB-MSV, an acute transforming retrovirus.  相似文献   

6.
7.
8.
9.
A van Ooyen  R Nusse 《Cell》1984,39(1):233-240
Many mammary tumors induced by mouse mammary tumor virus (MMTV) contain a provirus in the same region of the host-cell genome, leading to expression of a putative cellular oncogene called int-1. Here we present the structure and nucleotide sequence of int-1. We have established several proviral insertion sites exactly by nuclease S1 analysis or by molecular cloning and DNA sequencing. The protein-encoding domain of int-1 is distributed over four exons. At the 5' end of the gene two overlapping exons were detected, one of which is preceded by a TATA box. The deduced int-1-encoded protein has 370 amino acids, with a preponderance of hydrophobic residues at the NH2 terminus. Proviruses are found at both sides of the gene, usually oriented away from the gene. Downstream integrations occur frequently in the long 3' untranslated region of the last exon. One upstream provirus is inserted in the 5' untranslated region and, unlike the other upstream insertions, in the same orientation as the int-1 gene. Proviral integrations always leave the protein-encoding domain intact, providing further evidence that the int-1 protein contributes an essential step in mammary tumorigenesis.  相似文献   

10.
Jmjd2c is a candidate oncogene that encodes histone lysine demethylase. In this study, we discovered that over-expression of Jmjd2c increased the expression of Mdm2 oncogene dependent on its demethylase activity, which led to the reduction of p53 tumor suppressor gene product in the cells. A chromatin immunoprecipitation assay showed that Jmjd2c was recruited to the P2 promoter region of Mdm2 gene resulting in demethylation of histone H3 lysine 9, as typically found in actively transcribed genes. Furthermore, siRNA-mediated knockdown of Jmjd2c caused the reduction of Mdm2 expression in the cells. These results indicate that Mdm2 oncogene is a downstream target of Jmjd2c and may play an important role in Jmjd2c-mediated oncogenesis.  相似文献   

11.
12.
13.
14.
Hydroxyurea (HU) increases extrachromosomal DNA elimination in tumor cell lines. The c-myc oncogene is one of the many relevant amplified genes contained within the extrachromosomal DNA compartment. Spontaneous loss of amplified copies of c-myc induces terminal differentiation and apoptosis in the human HL-60 leukemia cell lines. In the present study, we evaluate HU's ability to induce apoptosis by eliminating extrachromosomally located c-myc oncogene in human tumor cell lines. The consequences of eliminating extrachromosomal DNA by HU were explored in two different cell lines using the TdT assay and acridine orange/ethidium bromide labeling. COLO 320 clone 3 and COLO 320 clone 21 cell lines contain the same number of amplified copies of c-myc oncogene, but located respectively on extrachromosomal DNA, and intrachromosomally in homogeneously staining regions. HU induced apoptosis in the COLO 320 clone 3 cell line by a time and concentration dependent mechanism but could not induce apoptosis in the COLO 320 clone 21 cell line. These results suggested that HU-induced apoptosis in COLO 320 cell lines depends on elimination of extrachromosomal amplified copies of the c-myc oncogene. The ability of HU to eliminate extrachromosomally amplified copies of the c-myc oncogene and to induce apoptosis should be considered when targeting malignancies with amplification of the c-myc oncogene in an extrachromosomal site.  相似文献   

15.
16.
应用PCR-SSCP技术并结合Southern印迹杂交从基因水平对正常和 ̄3H-TdR恶性转化小鼠胚胎成纤维细胞NC3H10和TC3H10中neu基因进行研究。Southern印迹杂交结果表明恶性转化的TC3H10细胞neu基因出现重排和扩增,SSCP分析未发现TC3H10细胞neu基因跨膜区突变。上述结果说明TC3H10细胞neu基因结构异常可能在跨膜区外,neu基因异常在 ̄3H-TdR诱导的细胞恶性转化过程中可能有重要的作用,EGF可促进neu基因表达增高,研究发现在EGF持续作用下,NC3H10细胞neu基因甲基化水平无显著变化,说明EGF可能是通过其它途径调控neu基因表达增高的,排除了EGF通过改变neu基因甲基化水平而调控neu基因表达的可能性。  相似文献   

17.
Human papillomaviruses (HPV), and in particular HPV type 16, are etiologic agents in the development of cervical cancer, which is the second most common form of cancer in women worldwide. Mammalian cells are susceptible to transformation in vitro by the E6 and E7 oncogenes derived from the HPV-16 genome. NIH-3T3 cells transfected with the HPV-16 E7 oncogene were found to exhibit cytolytic susceptibility to murine-activated macrophages. In comparison, E6 oncogene-expressing cells were not susceptible to lysis by activated macrophages. The E7 oncoprotein is multifunctional, being capable of complexing with the retinoblastoma tumor suppressor gene (anti-oncogene) product, stimulating DNA synthesis, and causing cell transformation in vitro. Macrophage killing assays performed on cell lines expressing E7 mutants revealed that the ability to complex the retinoblastoma tumor suppressor gene product and stimulate DNA synthesis did not induce susceptibility to activated macrophages, whereas the ability of E7 to cause transformation was required to induce susceptibility to activated macrophages. These data suggest that cell transformation is a more important prerequisite for inducing susceptibility to activated macrophages than is the loss of tumor suppressor gene function. This study also provides an initial link between HPV-16 oncogene expression and the ability of activated macrophages to selectively recognize and destroy HPV-16-associated neoplastic cells.  相似文献   

18.
Ten-eleven translocation 1 (TET1), a widely reported DNA demethylation protein, has been associated with tumorigenesis and metastasis. However, whether TET1 is an oncogene or tumor suppressor gene has been controversial; the mechanism of how TET1 affects cancer progression remains unclear. The current study aims to investigate how TET1 is changed in the tumor microenvironment and to explore the mechanisms of how TET1 affects colon cancer progression. Because hypoxia prevails on solid tumors, we established an important connection between hypoxia and DNA demethylation in tumorigenesis. By qPCR and RNA interference (RNAi) technology, we found that hypoxia increased TET1 expression with a hypoxia-inducible factor-1-alpha (HIF-1α)-dependent manner. By CHIP-qPCR and pyrosequencing technology, we demonstrated that TET1 regulated the target gene expression of HIF-1α through HIF-1α binding to hypoxia-responsive elements (HREs), and HIF-1α binding to HREs depended on CpG methylation levels. By Cell Counting Kit-8 (CCK-8) and transwell assay, we showed that loss of TET1 did not affect cell proliferation but inhibited migration. We also identified two novel gene mutants of TET1 in 120 paired tumor/normal tissue specimens by DNA sequencing and found that TET1 E2082K mutant blocked the TET1-enhanced cell migration. Our results showed that the downregulation of TET1 rescued the abnormally high levels of gene expression resulting from hypoxia in tumors and reduced the migration activity of tumor cells, suggesting a therapeutic role by interference with TET1 in colon cancer treatment. By demonstrating that hypoxia upregulated TET1 and that TET1 drove HIF-1α-responsive genes, we showed that an epigenetic mechanism and tumor microenvironment-driven models coexisted and mutually affected colon cancer.  相似文献   

19.
Eukaryotic cells contain a family of genes termed "cellular oncogenes" or "proto-oncogenes," thought to regulate normal cell growth and development. In some circumstances, such as following transduction by retroviruses, activation of these genes causes tumors and leukemias in animals. Possible mechanisms of cellular oncogene activation include: 1) DNA point mutation, deletion or insertion, 2) gene amplification, 3) gene activation by internal rearrangement, chromosomal translocation or promoter insertion, 4) recombinative events resulting in the formation of novel chimeric genes, and others. In this review, we consider data which implicates cellular oncogene activation in the pathogenesis of leukemia in humans. We discuss possible mechanisms by which oncogene activation may induce leukemias, as well as potential diagnostic and therapeutic implications.  相似文献   

20.
In this study we examine the mechanisms of dynamic DNA methylation of the p15(ink4b) tumor suppressor gene. Using conventional ChIP and ChiPseq, we identify the p15(ink4b) promoter as a target for the ZNF217 oncogene, the CoREST complex, and DNMT3A. Treatment of cells with TGF-β triggers active demethylation involving loss of ZNF217/CoREST/DNMT3A and the corecruitment of SMAD2/3, CBP, and the DNA glycosylase TDG. Knockdown of TDG, or its functional homolog MBD4, prevents TGF-β-dependent demethylation of p15(ink4b). DNA immunoprecipitation of 5mC and 5hmC indicates that 5mC undergoes conversion to 5hmC prior to activation of p15(ink4b). Remarkably, overexpression of ZNF217 inhibits active demethylation and expression of the p15(ink4b) gene by preventing recruitment of SMAD2/3 and TDG. These findings suggest that active demethylation is essential for regulating a subset of TGF-β-dependent genes. Importantly, disruption of active demethylation by the ZNF217 oncogene may be a paradigm for other oncogenic signals on DNA methylation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号