首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The backbone conformation of the two opioid pentapeptides Leu5-enkephalin and Met5-enkephalin was studied by the technique of resolution-enhanced infrared spectroscopy. In aqueous solution, the conformation-sensitive amide I bands of the two peptides are identical. The positions of these bands are consistent with the view that in aqueous solution both enkephalins exist as an ensemble of largely unfolded conformers. Interaction of Leu5- and Met5-enkephalins with bilayer membranes of ditetradecylphosphatidylcholine results in a substantial refolding of the peptide backbones. The conformation stabilized by the membrane environment is a hydrogen-bonded turn structure. Conformational transitions in enkephalins induced by a lipid environment may play a role in the specific interactions between these hormones and their receptor sites.  相似文献   

2.
A complete normal coordinate analysis of morphine using Wilson's GF matrix method and Urey Bradley force field has been carried out to understand the dynamical behaviour of morphine in relation to Leu5- and Met5-enkephalins. In addition, charge distribution on different atoms of morphine, along with that of Leu5- and Met5-enkephalins using CNDO/2 method is also reported. The similarity in charge distribution on some of the sites of these molecules is indicative of the possible interactions at the same receptor site. It is surmised that the recognition and interaction of active sites with the receptor must be dynamical in nature and for this the modes involving the active sites should play an important role. It is found that the binding to receptors is not static, but a dynamic process.  相似文献   

3.
[Met5]-Enkephalin and N-acetylphenylalanine methylamide containing (2S,3S)-[2,3-2H2]Phe were synthesized 270 MHz 1H NMR spectra of the normal and selectively deuterated species were analysed. The lower-field and higher-field beta-proton signals of the Phe4 residue of [Met5]-enkephalin were unambiguously assigned to the pro-S and pro-R protons, respectively. The same assignments apply to N-acetylphenylalanine methylamide in polar organic solvents and in 2H2O, but the alternative assignments apply in C2HCl3. For [Met5]-enkephalin, the vicinal spin coupling constants 3JalphabetaS and 3 JalphabetaR and the rotamer populations around the Calpha-Cbeta bond were determined in a variety of solvents. From the pH and temperature dependences of rotamer populations of [Met5]-enkephalin, the side-chain conformation of the Phe residue in 2H2O solution was found to be considerably different from that in (C2H3)2SO solution. Rotamer populations of the Phe4 residue of [Met5]-enkephalin in organic solvents depend on solvent polarity. As compared with the reference model molecule of N-acetylphenylalanine methylamide, the rotamer populations of Phe4 of [Met5]-enkephalin are affected possibly by steric repulsion with other residues; the rotamer I is primarily favored but the rotamer II is appreciably destabilized in weakly polar solvents.  相似文献   

4.
The synthesis of Leu-enkephalin selectively 17O-enriched in Gly2 and Gly3 is reported. The 17O-nmr chemical shifts of [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in H2O are almost identical and independent of the pH. Since hydrogen bonding is the dominant factor governing the chemical shifts of the peptide oxygen, it can be concluded that the hydration state of both oxygens is identical and independent of the pH. The 17O chemical shifts of the [17O-Leu5]-enkephalin terminal carboxyl group at pH approximately 1.9 and 5.6 are very different in H2O but very similar in CH3CN/DMSO (4:1) solution. This suggests that the protonation state of the carboxyl group at both pH values in CH3CN/DMSO solution is the same and consequently that Leu-enkephalin exists in the neutral form at pH approximately 5.6. In this organic mixed solvent system both Gly2 and Gly3 oxygen resonances exhibit a significant shift to high frequency by the same extent (delta delta approximately 30 ppm). It is concluded that both peptide oxygens are not hydrogen bonded to an appreciable extent and that no specific 2----5 hydrogen bonding exists to an appreciable extent. This conclusion is in agreement with the energy of activation for molecular rotation, as determined from T1 measurements, which was found to be almost identical for both [17O-Gly2, Leu5]- and [17O-Gly3, Leu5]-enkephalins in CH3CN/DMSO (4:1) mixed solvent.  相似文献   

5.
The avian ciliary ganglion has been reported to contain both enkephalin and substance P in preganglionic terminals. However, extensive biochemical characterization of these antigens has not been completed. Using radioimmunoassays specific for Met5- and for Leu5-enkephalin and for substance P we identified immunoreactive substances in ganglionic extracts that comigrate on HPLC columns with standard Met5- and Leu5-enkephalin and with substance P. The ontogeny of Met5-enkephalin and substance P during embryogenesis was determined in ganglionic extracts and we found that the content of Met5-enkephalin in the ganglion reached a peak at embryonic stage 37 whereas the content of substance P in the ganglion reached its maximum in the adult.  相似文献   

6.
The amides of Leu5-enkephalin, Met5-enkephalin, and three analogues, D-Ala2,Leu5-enkephalin, (AcO)Tyr1,Met5-enkephalin, and (AcO)Tyr1,D-Ala2,Met5-enkephalin, have been studied by means of 1H NMR spectroscopy in two different solvent systems: Me2SO-d6 and CDCl3. In the latter solvent the peptides were dissolved as complexes with 18-crown-6-ether, a coronand that binds strongly to the NH3+ groups. The crown ether complexation and the apolar solvent were used to simulate the anionic subsite of the receptor and the hydrophobic environment of the receptor cavity, respectively. The very unusual amide proton chemical shifts and their temperature coefficients suggest the presence of folded conformations in CDCl3 for all peptides, consistent with several models of opioid receptors and with the crystal structure of Leu5-enkephalin. The differences among the proposed cyclic conformations of the five peptides may be correlated, in part, with their different biological activity. All peptides in Me2SO-d6 are characterized by complex mixtures of extended fully solvated conformations.  相似文献   

7.
In order to investigate the structure-activity relationship of [Leu5]- and [Met5]enkephalins, [(4'-bromo)Phe4, Leu5]-, [(4'-bromo)Phe4, Met5]- and [Met5] enkephalins were synthesized and crystallized. The crystal structure of [(4'-bromo) Phe4, Leu5]- enkephalin was determined by X-ray diffraction method using the heavy atom method and refined to R = 0.092 by the least-squares method. The molecule in this crystal took essentially the same type I' beta-turn conformation found in [Leu5]enkephalin [Smith & Griffin (1978) Science 199, 1214-1216). On the other hand, the preliminary three-dimensional Patterson analyses showed that the most probable conformations of [(4'-bromo)Phe4,Met5]- and [Met5]enkephalins are both the dimeric extended forms. Based on these insights, the biologically active conformation of enkephalin was discussed in relation to the mu- and delta-receptors.  相似文献   

8.
Proton magnetic resonance studies of [Met5]-enkephalin (lipotropin 61-65) in aqueous solution indicate a conformational preference for the pentapeptide backbone. The structural differences between [Met5]-enkephalin and other, more flexible peptides have been investigated using paramagnetic probe techniques. An outline structure for beta-endorphin (lipotropin 61-91) in aqueous solution is obtained from binding studies using Gd(III) as a relaxation probe.  相似文献   

9.
To investigate the biologically active conformation of enkephalin, molecular-dynamics simulations were applied to [Met5]- and [D-Ala2,Met5]-enkephalins. The dynamic trajectory of monomeric extended [Met5]-enkephalin was analysed in terms of relative mobility between respective torsions of backbone chain. After 10 ps of the dynamics simulation, the conformational transition was converged into a stationary state among the beta-bend folded forms, where they are stabilized by several intramolecular hydrogen-bond formations. Similar conformational transition was also observed in the dynamics simulation of [D-Ala2,Met5]enkephalin, which is a more mu-receptor-specific peptide than [Met5]enkephalin. The geometrical correspondence between the monomeric enkephalin conformation in the stationary state and morphine molecule (a mu-specific rigid opiate) was surveyed by virtue of the triangular substructures generated by choosing three functional atoms in each molecule, and good resemblances were observed. On the other hand, the dynamics simulation of the antiparallel extended [Met5]enkephalin dimer showed a trajectory different from that of the monomeric one. Two intermolecular hydrogen bonds at Tyr1 (NH3+)...Met5(CO2-) end residues were held throughout the 100 ps simulation, the dimeric structure being consequently kept. The conformational transition of the backbone chains from the antiparallel extended form to the twisted one took place via an intermediate state. Many conformations revealed during the dynamics simulation showed that the relative orientations of each two Tyr1, Gly3, Phe4 and Met5 residues in the dimer are nearly related by a pseudo-C2-symmetry respectively, and both halves of the dimer structure could be further fitted to the monomeric folded enkephalin conformation. The monomeric and dimeric conformations of enkephalin at their stationary states are discussed in relation to the substrate-specificity for mu- and delta-opioid receptors.  相似文献   

10.
The FT-IR (Fourier Transform Infrared) Spectrum of [Met 5]-enkephalinamide in aqueous solution shows the presence of both the beta-turn and beta-sheet conformations. The beta-turn and beta-sheet conformations of enkephalins have been proposed to play a role in receptor selectivity. Addition of ethanol alters these secondary structural features and hence the effect of ethanol on ligand-receptor interaction may be mediated primarily through conformational changes of the ligand rather than those of the receptor.  相似文献   

11.
Eighteen endogenous opioid peptides, all containing the sequence of either Met5- or Leu5-enkephalin, were tested for their ability to modify nicotine-induced secretion from bovine adrenal chromaffin cells. ATP released from suspensions of freshly isolated cells was measured with the luciferin-luciferase bioluminescence method as an index of secretion. None of the peptides affected 5 microM nicotine-induced ATP release at 10 nM. Three peptides inhibited secretion at 5 microM: dynorphin1-13, dynorphin1-9, and rimorphin inhibited by 65%, 37%, and 29% respectively. Use of peptidase inhibitors (bestatin, thiorphan, bacitracin, or 1,10-phenanthroline) did not result in any of the other peptides showing potent actions on the nicotinic response, although bestatin and thiorphan did enhance the inhibitory actions of dynorphin1-13 and dynorphin1-9 by 20-30%. Nicotine-induced secretion of endogenous catecholamines from bovine chromaffin cells cultured for 3 days was also studied to assess any selective actions of the peptides on adrenaline or noradrenaline cell types. Dynorphin1-13 was 1,000-fold more potent than Leu5-enkephalin at inhibiting endogenous catecholamine secretion. Dynorphin1-13 was slightly more potent at inhibiting noradrenaline release than adrenaline release whereas Leu5-enkephalin showed the opposite selectivity. The structure-activity relationships of opioid peptide actions on the chromaffin cell nicotinic response are discussed in relation to the properties of the adrenal opioid binding sites.  相似文献   

12.
An enzyme hydrolyzing succinyl trialanine-4-nitroanilide was extracted from human kidney homogenate and purified by means of gel filtration on Sepharose CL-4B, anion-exchange chromatography on DEAE-Sepharose CL-6B and affinity chromatography on carbobenzoxy-L-Ala-L-Ala-D-Ala-polylysine-agarose. The purified enzyme consists of a single peptide, and its molecular weight was estimated to be about 125 000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme cleaved the substrate at the bond between succinyl dialanine and alanine-4-nitroanilide and showed a Km value of 2.1 mM at the optimal pH of 8.0. The activity was increased by Ca2+ and Mg2+, but was inhibited by phosphoramidon and ethylenediaminetetraacetic acid. The enzyme cleaved the oxydized insulin B chain, angiotensinogen tetradecapeptide, angiotensin I, angiotensin II, angiotensin III, [Sar1,Ala8]-angiotensin II, bradykinin, des-Pro2-bradykinin, Leu5-enkephalin, Met 5-enkephalin, [D-Ala2,Met5]-enkephalinamide and [D-Ala2-Met5]-enkephalin, but did not cleave [D-Ala2,D-Leu5]-enkephalin. The bonds on the amino side of the hydrophobic amino acids of the peptides were cleaved by the enzyme.  相似文献   

13.
Reaction of Opioid Peptides with Neutral Endopeptidase (''Enkephalinase")   总被引:6,自引:3,他引:3  
The kinetics of the reactions of nine opioid peptides with the neutral endopeptidase ("enkephalinase") activities of human kidney, rat kidney, and rat brain have been determined. These opioid peptides can be divided into two classes, those that are good inhibitors of Leu5-enkephalin hydrolysis (Ki less than 75 microM) and good substrates for the enzyme, and those that are poor inhibitors (Ki greater than 500 microM) and are not substrates for the enzyme. The former group includes Leu5-enkephalin, Met5-enkephalin, Met5-enkephalin-Arg6-Phe7, beta-lipotropin, and gamma-endorphin, while the nonreactive opioid peptides include alpha-neo-endorphin, beta-neo-endorphin, dynorphin, and beta-endorphin. These results suggest that those peptides containing the Met5-enkephalin sequence are more reactive than those containing the Leu5-enkephalin sequence. The lack of specificity of this neutral endopeptidase indicates that it may function in the degradation of a variety of biologically active peptides.  相似文献   

14.
An adrenomedullary protease capable of generating Met5-enkephalin from endogenous precursor(s) has been purified 1,000-fold using affinity chromatography in combination with gel filtration. This trypsin-like enzyme has an apparent molecular weight of 20,000 daltons by gel filtration. The reactivity of the enzyme toward several fluorogenic peptides, Peptides E and F, and the heptapeptides, Met5-enkephalin-Arg6-Phe7 and Met5-enkephalin-Arg6-Arg7, was examined. The two heptapeptides and the fluorogenic compounds were poor substrates for the adrenal enzyme; in contrast, Peptides E and F were cleaved. The low molecular weight products of Peptide F digestion were identified by HPLC as Arg1-Met6-enkephalin, Met5-enkephalin, and Met5-enkephalin-Lys6, while digestion of Peptide E resulted in the production of Leu5-enkephalin and Met5-enkephalin-Arg6-Arg7. [3H]-beta m-Lipotropin was not hydrolyzed by the adrenal enzyme. These results indicate that this adreno-medullary protease is capable of cleaving adrenal opioid peptides at the paired basic sites and thus represents a possible candidate for a proenkephalin-converting enzyme.  相似文献   

15.
In our previous study on [Met5]-enkephalin analogues, [Met5]-enkephalin semicarbazide was found as a new enkephalin amide that produces antinociception even in ACE (Angiotensin Converting Enzyme) exposure in vivo. In the present work we examined the corresponding [Leu5]-enkephalin derivatives to confirm the influence of semicarbazide substitution. To prevent the enkephalins biodegradation animals were pretreated with a mixture of peptidase inhibitors. As assessed by tail-flick test no significant difference was detected between the produced antinociception by the [Leu5]-enkephalin derivatives. Based on our results both semicarbazide and ethylamide groups could preserve the provided analgesia after captopril (ACE inhibitor) omission from the peptidase inhibitors mixture. This work confirms that semicarbazide substitution on enkephalins yields ACE resistance antinociceptive peptides, nevertheless it may necessarily not enhance the peptides analgesic potencies.  相似文献   

16.
I S Zagon  P McLaughlin 《Life sciences》1988,43(16):1313-1318
Endogenous opioid systems (endogenous opioids and their receptors) are known to participate in the regulation of tumor growth. The present study was conducted to examine whether [Met5]-enkephalin influences the growth of transplanted neuroblastoma, and to explore the role of other opioid peptides in carcinogenesis. A/Jax mice were inoculated with 10(6) S20Y cells and received daily injections of [Met5]-enkephalin. Dosages of 0.5 to 30 mg/kg delayed tumor appearance and prolonged survival of these mice; antitumor effects were blocked by concomitant injections of naloxone. Daily administration (10 mg/kg) of [Leu5]-enkephalin had no effect on neurotumor growth. [D-Ala2, D-Leu5]-enkephalin and ethylketocyclazocine, ligands selective for delta and kappa receptors, respectively, also did not influence neuro-oncogenesis. These results demonstrated the potent growth inhibiting effects of the naturally occurring opioid pentapeptide, [Met5]-enkephalin, and substantiate reports identifying and characterizing an opioid receptor (i.e., zeta) for which [Met5]-enkephalin is the most potent ligand.  相似文献   

17.
Transfer of an aqueous-soluble peptide hormone or neurotransmitter such as [Met]- or [Leu]enkephalin (Tyr1-Gly2-Gly3-Phe4-Met5(Leu5)), to the lipid-rich environment of its membrane-embedded receptor protein may convert the peptide into a ("bioactive") conformation required for eliciting biological activity. We have examined by high-resolution nuclear magnetic resonance (NMR) spectroscopy the conformational parameters of free enkephalin in aqueous solution versus those of enkephalin bound to lysophosphatidylcholine micelles using two approaches: 1) exchange rates, line broadening, coupling constants, and chemical shift changes of enkephalin backbone peptide N-H protons were measured for free and membrane-bound peptide in H2O (360 MHz, pH 5.6, 20 degrees C). A selective upfield shift observed for the Met5(Leu5) N-H proton upon lipid binding was interpreted in terms of its incorporation into an intramolecular H-bond. 2) 13C chemical shift changes induced by the shift reagent praseodymium nitrate (Pr(NO3)3) were compared in the presence and absence of lipid micelles. Significant changes occurring in Gly2 carbon atoms in membrane-bound enkephalin suggested the relative proximity of this residue to the Pr3+ atom (bound to the Met5(Leu5) COOH-terminal carboxylate 4 residues away). These combined results, in conjunction with studies on the specific interactions of enkephalin substituents with the micelles (Deber, C. M., and Behnam, B. A., (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 61-65) suggest that enkephalin folds into an intramolecularly H-bonded beta-turn structure (with an H-bond between Gly2 C = O and Met5 NH) in the lipid environment. Such folding could facilitate the positioning of strategic residues in vivo as the hormone diffuses toward its receptor.  相似文献   

18.
A Heitz  L Chiche  D Le-Nguyen  B Castro 《Biochemistry》1989,28(6):2392-2398
The solution conformation of synthetic Ecballium elaterium trypsin inhibitor II, a 28-residue peptide with 3 disulfide bridges, has been studied by 1H 2D NMR measurements. Secondary structure elements were determined: a miniantiparallel beta-sheet Met 7-Cys 9 and Gly 25-Cys 27, a beta-hairpin 20-28 with beta-turn 22-25, and two tight turns Asp 12-Cys 15 and Leu 16-Cys 19. A set of interproton distance restraints deduced from two-dimensional nuclear Overhauser enhancement spectra and 13 phi backbone torsion angles restraints were used as the basis of three-dimensional structure computations including disulfide bridges arrangement by using distance geometry calculations. Computations for the 15 possible S-S linkage combinations lead to the proposal of the array 2-19, 9-21, 15-27 as the most probable structure for EETI II.  相似文献   

19.
The delta Phe4-enkephalins have been synthesized and examined in an in vitro receptor binding assay and an in vivo tail flick analgesia test. The delta Phe4 residue was derived from Boc-Gly-Phe(beta-OH)-OH by spontaneous dehydration and azlactonization. The dipeptide azlactone was coupled directly with H-Leu-OBzl to yield a tripeptide which was converted into the pentapeptides after stepwise coupling with two amino acids using the water soluble EDC-HOBt method. Dehydroenkephalins were liberated with hydrogen fluoride in the presence of anisole. In the radioligand binding assay which did not contain an enzyme inhibitor [D-Ala2, delta Phe4, Leu5] enkephalin was almost twice as active as saturated [D-Ala2, D-Leu5]-enkephalin. The delta Phe4-enkephalins exhibited a considerably diminished activity as compared with the saturated peptide in the in vivo analgesic assay. These results are discussed with regard to the enzyme stability and receptor preference of dehydroenkephalins.  相似文献   

20.
The structural features related to the biologic activities of a potent, response-selective decapeptide agonist of human C5a, YSFKPMPLaR (C5a65-74, Y65, F67, P69, P71, D-Ala73), were identified by NMR analysis in H2O, DMSO and TFE. This investigation showed that the KPM residues in H2O and the SFKPM residues in DMSO exhibited an extended backbone conformation, whereas a twisted conformation was found in this region in TFE. In H2O, the C-terminal region (PLaR) adopted a distorted type II beta-turn or a type II/V beta-turn. In the type IIN beta-turn, Leu72 exhibited a conformation typical of a type II beta-turn, whereas D-Ala73 exhibited a conformation characteristic of a type V beta-turn. Furthermore, a gamma-turn involving residues LaR overlapped with the type II/V beta-turn. In DMSO, the C-terminal region had the analogous turn-like motif (type II/V beta-turn overlapping with gamma-turn) found in H2O. In TFE, no beta-turn motifs were formed by the PLaR residues. These turn-like motifs in the C-terminal region of the peptide in both H2O and DMSO were in agreement with the biologically important conformations predicted earlier by a structure-function analysis of a related panel of decapeptide analogs. The motifs determined by the NMR analysis of YSFKPMPLaR in H2O and DMSO may represent structural elements important for C5a agonist activity and thus can be used to design the next generation of C5a agonist, partial agonist and antagonist analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号