首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new mechanical model for function of the pharyngeal jaw apparatus in generalized perciform fishes is developed from work with the family Haemulidae. The model is based on anatomical observations, patterns of muscle activity during feeding (electromyography), and the actions of directly stimulated muscles. The primary working stroke of the pharyngeal apparatus involves simultaneous upper jaw depression and retraction against a stabilized and elevating lower jaw. The working stroke is characterized by overlapping activity in most branchial muscles and is resolved into three phases. Four muscles (obliquus dorsalis 3, levator posterior, levator externus 3/4, and obliquus posterior) that act to depress the upper jaws become active in the first phase. Next, the retractor dorsalis, the only upper jaw retracting muscle, becomes active. Finally, there is activity in several muscles (transversus ventrales, pharyngocleithralis externus, pharyngohyoideus, and protractor pectoralis) that attach to the lower jaws. The combined effect of these muscles is to elevate and stabilize the lower jaws against the depressing and retracting upper jaws. The model identifies a novel mechanism of upper jaw depression, here proposed to be the primary component of the perciform pharyngeal jaw bite. The key to this mechanism is the joint between the epibranchial and toothed pharyngobranchial of arches 3 and 4. Dorsal rotation of epibranchials 3 and 4 about the insertion of the obliquus posterior depresses the lateral border of pharyngobranchials 3 and 4 (upper jaw). The obliquus dorsalis 3 muscle crosses the epibranchial-pharyngo-branchial joint in arches 3 and 4, and several additional muscles effect epibranchial rotation. Five upper jaw muscles cause upper jaw depression upon electrical stimulation: the obliquus dorsalis 3, levator posterior, levator externus 3/4, obliquus posterior, and transversus dorsalis. This result directly contradicts previous interpretations of function for the first three muscles. The presence of strong depression of the upper pharyngeal jaws explains the ability of many generalized perciform fishes to crush hard prey in their pharyngeal apparatus.  相似文献   

2.
Dissection of peripheral nerves in the ocean sunfish Mola mola showed the lateral line system to comprise 6 cephalic and 1 trunk lateral lines, all neuromasts being superficial. The trunk line was restricted to the anterior half of the body, the number of neuromasts (27) being fewer than those previously recorded in other tetraodontiforms. The lateral ramus of the posterior lateral line nerve did not form a “serial collector nerve” along the body. The number of foramina in the neurocranium, serving as passages for the cranial nerves, was fewer than in primitive tetraodontiforms, the reduction being related to modifications in the posterior cranium. Some muscle homologies were reinterpreted based on nerve innervation patterns. The cutaneous branch innervation pattern in the claval fin rays was clearly identical with that in the dorsal and anal fin rays, but differed significantly from that in the caudal fin rays, providing strong support for the hypothesis that the clavus comprises highly modified components of the dorsal and anal fins.  相似文献   

3.
Proprioceptive innervation of moufflon extrinsic ocular musculature and m. levator palpebrae superioris was studied. Muscle spindles and Golgi tendon organs were found. The first ones are usually between 1st and 2nd order muscle fascicles. The muscle spindles are highly represented in the extrinsic ocular muscles, but less numerous in m. levator palpebrae superioris. Their number varies according to muscles and individuals. In the same subject, also the ratio between the number of the muscle spindles found in m. rectus dorsalis and that of m. levator palpebrae superioris was examined. Besides, the histological structure of the intrafusal fascicles was investigated. Particular attention was devoted to the nerve supply of the muscle spindle. By means of impregnating methods, sensory and motor endings were identified. Primary and secondary sensory endings only in a few cases showed their usual pattern: motor fibres can end in form of plates or trails. Golgi tendon organs were observed between the tendon and the muscular tissue and are always less numerous.  相似文献   

4.
Homologies of muscles of the m. transversospinalis group in the dorsal and cervical regions in Sauria are established based on detailed dissections and published accounts of lepidosaurs, crocodylians, and birds. Attachments and directions of tendons comprising this muscle group are fairly conserved among the saurian clades, enabling rather robust inferences on muscle homologies. The innervation pattern indicates that mm. ascendentes are the most lateral muscles of the m. transversospinalis group in Aves, and are inferred to be homologous with the crocodylian m. tendinoarticularis based on their topological similarities. It is suggested here that the lepidosaurian articulo-parietalis part of m. longissimus cervico-capitis actually belongs to the m. transversospinalis group because its tendons of origin are shared with those of m. semispinalis. The avian m. complexus and the lateral part of the crocodylian m. transversospinalis capitis have origins and insertions similar to this lepidosaurian muscle, and are proposed to be homologous with the latter. In some birds, m. longus colli dorsalis, pars profunda continues directly into the anterior cervical region as m. splenius accessorius, suggesting a serially homologous relationship. Similarly, m. splenius anticus continues anteriorly from m. longus colli dorsalis, pars cranialis, and both of these muscles lie dorsal to m. splenius accessorius. Therefore, the currently used nomenclature that regards m. splenius accessorius as a part of m. longus colli dorsalis, pars cranialis and that regards m. splenius anticus as a part of the former muscle does not accurately reflect the serial homologies among these muscles and may not be justified.  相似文献   

5.
6.
Morphology of the Parrotfish Pharyngeal Jaw Apparatus   总被引:1,自引:0,他引:1  
SYNOPSIS. Analysis of the anatomy of the pharyngeal apparatusof parrotfish demonstrates extraordinary specialization of thegrinding jaws. The epibranchials have lost their gill-bearingfunction. The first epibranchial is the structural element ofthe pharyngeal valve that is operated by the first levator externus,first branchial adductor and part one of the transversus dorsalismuscles. Five pairs of muscles (fourth levator externus, levatorposterior lateralis and medialis, fifth branchial adductor,part two of the transversus ventralis) are positioned to adductthe lower pharyngeal. The retractor dorsalis and fourth obliquusdorsalis are positioned to retract the upper pharyngeal. Thethird levator internus and transversus dorsalis posterior protractthe upper pharyngeal. The fourth levator externus, both partsof the levator posterior and the fifth adductor are massiveand pinnate. Deep fossae for the attachment of the fourth levatorexternus and levator posterior muscles are sculpted out of theneurocranium. A ventral spike process of the prootic and expandedhemal postzygapophyses of the first three vertebrae are skeletalfeatures associated with the elaborated musculature of the pharynx.Synovial joints are present between the basicranium and upperpharyngeals, between the upper pharyngeals and fourth epibranchialsand between the lower pharyngeal and cleithrum. The upper pharyngealsact as a single unit bound by cruciate ligaments. The fourthepibranchial is a key element in the pharyngeal apparatus andserves to direct forces generated by the transversus ventralis,fifth adductor, levator posterior lateralis, transversus dorsalisposterior and fourth obliquus dorsalis.  相似文献   

7.
Summary Histochemical studies of the opercularis muscle of the bullfrog (Rana catesbeiana) and the tiger salamander (Ambystoma tigrinum) provide evidence that the opercularis muscle of anurans is a specialized, tonic portion of the levator scapulae superior muscle. Staining results for myosin adenosine triphosphatase (ATPase) and succinate dehydrogenase (SDH), combined with measurements of muscle fiber diameters, demonstrate that the opercularis/levator scapulae superior muscle mass of both the tiger salamander and bullfrog consists of an anterior tonic portion, a middle fast oxidative-glycolytic (FOG) twitch portion, and a posterior fast-glycolytic (FG) twitch portion. In R. catesbeiana the tonic fibers represent 57.3% of the fiber total and (because they have relatively narrow diameters) about 29% of the cross-sectional area of the muscle mass, and form that part of the muscle (=opercularis muscle) that inserts on the operculum. In Ambystoma the tonic fibers represent only 8.8% of the fiber total and represent about 4% of the cross-sectional area. In the tiger salamander, the entire levator scapulae superior muscle inserts on the operculum and therefore represents the opercularis muscle. The bullfrog differs from the tiger salamander, therefore, in that the anterior tonic part of the opercularis/levator scapulae superior complex is greatly enlarged and the insertion on the operculum is limited to these tonic fibers. No evidence of a columellar muscle was found in R. catesbeiana. Previous reports of one in this species and in other anurans may be based on the tripartite nature of the opercularis/levator scapulae superior muscle mass. The middle FOG portion of the muscle may have been considered a muscle distinct from the anterior tonic portion (=opercularis muscle) and the posterior FG portion.  相似文献   

8.
(1) Motor innervation of the pharynx levator muscle of Helix pomatia was investigated with intracellular recording and axonal iontophoresis of cobalt chloride. (2) Muscle fibers respond to direct electrical stimulation of the muscle with active graded responses or non-overshooting spike potentials. (3) Each fiber is innervated via the external and internal lip nerves by several (mostly 3) excitatory nerve fibers each. Two types of EPSPs can be distinguished according to amplitude, duration, and facilitation. (4) Axonal CoCl2-staining via an external lip nerve branch revealed many nerve fibers entering the muscle and branching there into a rich network of blebbed fibers of various diameters.  相似文献   

9.
The present report deals with the functional properties (contraction parameters and neuromuscular transmission) of muscle grafts and transposed muscles substituted for the levator ani muscle in the rat. The experiments were divided into four main groups. Group I - the levator ani [LA] was excised and replaced in its own bed. Group II - the extensor digitorum longus, a fast muscle (with or without predenervation), and Group III - the soleus, a slow twitch muscle, were substituted for the LA. In group IV, the gracilis anterior muscle was either freely grafted in place of the LA or transposed a) with intact innervation, b) with its vascular supply intact or c) with preserved neuro-vascular supply. The optimum results of twitch and tetanic tension, and the amplitude of stimulation EMG responses was found in the case of LA resutured into its own bed and in the case transposition of the gracilis anterior muscle had been performed with its neuro-vascular supply intact in place of the LA. On the basis of these functional findings and morphological and anatomical observations (Grim et al. 1982), a surgical procedure is suggested for patients with anal incontinence (Grim et al. 1981, Dittertová-Vlasáková et al. 1982).  相似文献   

10.
We aimed to assess the reliability of the single biopsy approach for calculating muscle protein synthesis rates compared with the well described sequential muscle biopsy approach following a primed continuous infusion of L-[ring-(2)H(5)]phenylalanine and GC-MS analysis in older men. Two separate experimental infusion protocols, with differing stable isotope amino acid incorporation times, were employed consisting of n = 27 (experiment 1) or n = 9 (experiment 2). Specifically, mixed muscle protein FSR were calculated from baseline plasma protein enrichments and muscle protein enrichments obtained at 90 min or 50 min (1BX SHORT), 210 min or 170 min (1BX LONG), and between the muscle protein enrichments obtained at 90 and 210 min or 50 min and 170 min (2BX) of the infusion for experiments 1 and 2, respectively. In experiment 2, we also assessed the error that is introduced to the single muscle biopsy approach when nontracer naive subjects are recruited for participation in a primed continuous infusion of isotope-labeled amino acids. In experiment 1, applying the individual plasma protein enrichment values to the single muscle biopsy approach resulted in no differences in muscle protein FSR between the 1BX SHORT (0.031 ± 0.003%·h(-1)), 1BX LONG (0.032 ± 0.002%·h(-1)), or the 2BX approach (0.034 ± 0.002%·h(-1)). A significant correlation in muscle protein FSR was observed only between the 1BX LONG and 2BX approach (r = 0.8; P < 0.001). Similar results were observed in experiment 2. In addition, using the single biopsy approach in nontracer na?ve state results in a muscle protein FSR that is negative for both the 1BX SHORT (-0.67 ± 0.051%·h(-1)) and 1BX LONG (-0.19 ± 0.051%·h(-1)) approaches. This is the first study to demonstrate that the single biopsy approach, coupled with the background enrichment of L-[ring-(2)H(5)]-phenylalanine of mixed plasma proteins, generates data that are similar to using the sequential muscle biopsy approach in the elderly population.  相似文献   

11.
Fiber-type composition and several stereological parameters of the levator ani (pubocaudal) muscle were evaluated in five nulliparous and five multiparous beagles using myosin ATPase-histochemistry and systematically selected muscle cross-sections. With respect to the narrow canine pelvic cavity, this study was also undertaken to determine whether vaginal birth of at least seven litters causes similar neuromuscular changes in the canine levator ani (pubocaudal) muscle analoguous to those seen in the pelvic floor muscles of women after vaginal delivery. The canine pubocaudal muscle is comprised of approximately equal amounts of slow twitch type I and fast twitch type II (IIA, IIS) fibers. The muscles of both the nulliparous and multiparous beagles did not display any signs indicative of denervation or myopathology. The multiparous dogs exhibited significantly increased mean absolute muscle (1720 mm(3)) and total fiber-type I volumes (850 mm(3)) as well as relevantly increased mean diameter of type I fibers (72.0 microm) when compared with the nulliparous group. The canine levator ani (pubocaudal) muscle is not pathologically affected by vaginal deliveries and seems to adapt to numerous successive pregnancies and births through fiber-type I hypertrophy.  相似文献   

12.
Smit WA  Velzing EH 《Tissue & cell》1986,18(3):469-478
The transformation of the slow contracting larval m. obliquus lateralis caudalis II during metamorphosis into the asynchronous indirect flight muscle, m. obliquus lateralis dorsalis, in the Colorado beetle, Leptinotarsa decemlineata, was examined by electron microscopy. Particular attention was paid to the fate of the larval muscle fibres, the origin and behaviour of the myoblasts for flight muscle development and the change of the myofibrillar filament lattice of the larva into that of the adult. In the pre-pupal period, the larval muscles dedifferentiate and fragment. At pupation, the muscle fibres consist of cell fragments containing very few myofibrils. The sarcoplasmic reticulum and the transverse tubular system are greatly reduced. The number of myoblasts developed from satellite cells by mitosis increases considerably. They penetrate the muscle fibre and surround the cell fragments. The new fibres of the flight muscle develop from myocytes fused with the larval fragments. The larval basal lamina, surrounding the cell fragments and myoblasts, is present in pupae up to 1 day old. In pupae about 2.5 days old new myofibrils appear that have the adult filament lattice. The insect muscle transformation and the repair of vertebrate muscle after injury show striking resemblances.  相似文献   

13.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

14.
Summary The innervation of the toad (Bufo marinus) lung was studied with transmission electron microscopy and fluorescence techniques, both before and after 12 or 20 days close vagosympathetic denervation. Four cytologically distinct types of neuronal processes were recognised, in relation to the visceral muscles of the lung. These were described as cholinergic, adrenergic, nonadrenergic/non-cholinergic (NANC) and sensory on the basis of the characteristics of their vesicular content and cytochemical reactions. An apparent efferent innervation of visceral smooth muscle was achieved by NANC (50%), cholinergic (25%) and adrenergic (25%) fibres. A few sensory fibres were also present. After denervation only NANC fibres persisted, showing that the cell bodies of these fibres were intrapulmonary. The vascular smooth muscle was supplied by cholinergic, adrenergic and sensory fibres. In the walls of the proximal branches of the pulmonary artery were fibres containing large dense-cored vesicles. These profiles, which were associated with the vasa vasorum, were similar to neurosecretory fibres. After denervation all neural profiles associated with the vasculature had degenerated. The observations suggest that vagal vasodepressor effects in the toad lung are mediated indirectly through relaxation of visceral muscle strands which in their contracted state compress vascular channels.The authors would like to thank Dr. J.R. McLean for technical advice on fluorescence microscopy. This work was supported by a grant from the Australian Research Grants Committee  相似文献   

15.
Loss of chelipeds in crustaceans results in severe atrophy of the major muscle responsible for lifting the limb, the anterior levator. We decided to test if this loss of mechanical load altered muscle phenotype as measured by SDS-PAGE analysis of levator total protein and actomyosin fractions. Levator muscles of adult crayfish, Procambarus clarkii, with either functional regenerate limbs or lack of limb buds (papilla stage) were compared with those from normal contralateral limbs and those from pristine animals. We find that there is no difference in protein profiles among the three conditions. However, the total protein profile for the dually excited levator muscle is unique compared to those of fast or slow muscles of the abdomen (L and SEL, respectively), which receive only phasic or tonic excitatory innervation. The levator myosin heavy chain profile is similar to that of slow phenotype muscles such as the SEL and opener. We conclude that load does not influence levator phenotype. This is likely due either to the intact innervation and continued activation of the levator during atrophy or to the maintenance of passive tension on the muscle. J. Exp. Zool. 289:10-22, 2001.  相似文献   

16.
Young male rats were castrated at 7 days of age, and treated with testosterone propionate daily from 7 to 34 days of age. At 13 months of age, motor axons and terminals innervating the levator ani (LA) muscle were stained with tetranitroblue tetrazolium (TNBT). The number of separate axons innervating individual muscle fibers was counted, and muscle fiber diameter was measured. Previous studies have shown that this androgen treatment increases muscle fiber diameter and delays synapse elimination, measured as (1) a greater percentage of muscle fibers innervated by multiple axons and (2) larger motor units. The present results indicate that the androgenic effect on synapse elimination is permanent, in that high levels of multiple innervation persisted for 12 months after the end of androgen treatment. In contrast, the effect on muscle fiber diameter was not maintained for this period. This dissociation of androgenic effects on the pattern of innervation from androgenic effects on muscle fiber diameter offers further evidence that the androgenic maintenance of multiple innervation is not dependent on muscle fiber size. In addition, circulating testosterone levels were measured at 50 and 60 days of age in animals similarly treated with androgen or oil from 7 to 34 days of age. By 60 days of age, testosterone levels in hormone-treated animals had dropped below detectability, comparable to levels in oil-treated controls. This provides additional evidence that androgen treatment during juvenile development can have permanent effects on the adult pattern of innervation in the LA muscle.  相似文献   

17.
In ferrets, we investigated the presence of choline acetyltransferase (ChAT), vasoactive intestinal peptide (VIP), and markers for nitric oxide synthase (NOS) in preganglionic parasympathetic neurons innervating extrathoracic trachea and intrapulmonary airways. Cholera toxin beta-subunit, a retrograde axonal transganglionic tracer, was used to identify airway-related vagal preganglionic neurons. Double-labeling immunohistochemistry and confocal microscopy were employed to characterize the chemical nature of identified airway-related vagal preganglionic neurons at a single cell level. Physiological experiments were performed to determine whether activation of the VIP and ChAT coexpressing vagal preganglionic neurons plays a role in relaxation of precontracted airway smooth muscle tone after muscarinic receptor blockade. The results showed that 1) all identified vagal preganglionic neurons innervating extrathoracic and intrapulmonary airways are acetylcholine-producing cells, 2) cholinergic neurons innervating the airways coexpress ChAT and VIP but do not contain NOS, and 3) chemical stimulation of the rostral nucleus ambiguus had no significant effect on precontracted airway smooth muscle tone after muscarinic receptor blockade. These studies indicate that vagal preganglionic neurons are cholinergic in nature and coexpress VIP but do not contain NOS; their stimulation increases cholinergic outflow, without activation of inhibitory nonadrenergic, noncholinergic ganglionic neurons, stimulation of which induces airway smooth muscle relaxation. Furthermore, these studies do not support the possibility of direct inhibitory innervation of airway smooth muscle by vagal preganglionic fibers that contain VIP.  相似文献   

18.
The inhibitory innervation of the cervical trachea was studied in situ in anesthetized male guinea pigs. We measured effects of electrical stimulation of vagal motor and sympathetic trunk nerve fibers, during atropine, on trachealis muscle tension. Effects of direct transmural stimulation of trachealis muscle were also determined. We confirmed the dual nature of the inhibitory innervation to this muscle. Vagal motor inhibitory nerves are shown to be preganglionic. Neural transmission at the level of the ganglia is characterized by filtering of high frequency action potentials. The neurotransmitter at the myoneural junction is unidentified but is not norepinephrine. Maximal relaxation accounts for about 20-40% of maximal relaxations seen with transmural stimulation of trachealis muscle in the presence of atropine. Sympathetic trunk nerve fibers are also preganglionic. Neurotransmission at the level of the ganglia is apparently 1:1 at high-action potential frequencies. Norepinephrine released presynaptically has access to smooth muscle beta- but not alpha-receptors. Maximal adrenergic relaxations account for 60-80% of total transmural stimulation relaxations. Transmural stimulation relaxations appear to be accounted for by release of neurotransmitter from sympathetic adrenergic plus vagal nonadrenergic postganglionic nerve fibers.  相似文献   

19.
The spino-occipital nerve (SO) and ventral rami of the spinal nerves (SV) in 10 tetraodontiform families and 5 outgroup taxa were examined, with special reference to pectoral and pelvic fin muscle innervation. Compared with the outgroup taxa, tetraodontiforms were characteristic in having SO3 + SV1 (SO3 in tetraodontids) that gave off several lateral subbranches to the pectoral fin base and SO participation in infracarinalis anterior innervation. SO and SV1 were connected with one another (6 patterns) before entering the pectoral fin muscles in most species, including the outgroup taxa, resulting in the participation of SV1 in the innervation of almost all of the pectoral fin muscles. SO3 + SV1 was present in all tetraodontiforms (except in 2 tetraodontids having only SO3) and the outgroup taxa, an upper dorsal branch uniformly extending dorsally into the pectoral fin base. The pectoral fin base also received a branch ventrally, but its identity differed (participation or nonparticipation of SV2). SV1 alone constituting the branch was a derived condition occurring in Aracanidae, Ostraciidae, Tetraodontidae, Diodontidae, and Molidae. No strong characters supporting a tetraodontiform sister group were recognized among the spino-occipital nerve and ventral rami of spinal nerves.  相似文献   

20.
The manner of innervation of the pelvic outlet muscles in fowl (Gallus gallus domesticus) was examined in detail in four male pelvic halves. The segmental arrangement of the nerve supply in the sacral and pudendal plexuses was compared to that of Lacertilia and Urodela as a basis for a morphological analysis of the pelvic outlet muscles. From the viewpoint of innervation, the pelvic outlet muscles of fowl are classified into two groups: a sphincter muscle group and a levator muscle group. These two groups are closely related to the ventral muscles of the pelvic limb. In contrast to the morphology of pelvic outlet muscles in lacertilians, in fowl the caudal muscle element does not contribute to the formation of these muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号