首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterostatin (APGPR) found in the gastrointestinal tract and brain is an anorectic pentapeptide. We found that APGPR inhibited morphine-induced analgesia after intracerebroventricular administration in mice at a dose of 10nmol/mouse. The anti-analgesic effect of APGPR was inhibited by pretreatment with lorglumide and LY225910, antagonists for cholecystokinin 1 (CCK1) and cholecystokinin 2 (CCK2) receptors, respectively. The anti-analgesic effect of APGPR may be mediated by CCK release, since APGPR does not have affinity for CCK receptors.  相似文献   

2.
Enterostatin (APGPR) is a pentapeptide released from its precursor protein, procolipase. We found for the first time that enterostatin has memory-enhancing activity. Enterostatin enhanced memory consolidation after central or oral administration at a dose of 10 nmol/mouse or 300 mg/kg, respectively, in a step-through type passive avoidance test in mice. The memory-enhancing activity of enterostatin was inhibited by pretreatment with lorglumide, an antagonist for cholecystokinin 1 (CCK1) receptor. However, enterostatin had no affinity for CCK receptors. These results suggest that enterostatin improves memory retention through CCK release.  相似文献   

3.
Cholecystokinin peptides (CCK) have been shown to antagonize many opioid-mediated effects. The present study was undertaken to determine whether peripheral injections of cholecystokinin sulphated octapeptide (CCK8), cholecystokinin tetrapeptide (CCK4), the CCK(1) (lorglumide) and the CCK(2) (PD-135,158 and LY-225910) receptor antagonists can influence a classic morphine excitatory effect, i.e. the display of Straub tail reaction in mice (STR). A total of 570 female Balb/C mice were tested. Experiment 1 was undertaken to determine whether i.p. injections of CCK8 or CCK4 can influence STR. Each animal was treated with i.p. injections of saline or CCK8 (10 and 20 nmol/kg) or CCK4 (20 and 40 nmol/kg). After 30 min all animals received an i.p. injection of morphine hydrochloride (10.0 mg/kg). The highest doses of both CCK8 (35% STR) and CCK4 (40% STR) significantly reduced STR as compared to saline (85% STR) treated mice (Fisher test; P < 0.01). In experiment 2 each animal was treated with ip injections of saline or 1.0 mg/kg lorglumide or PD-135,158 fifteen minutes before an injection of morphine at doses ranging from 1.0 to 50.0 mg/kg. In experiment 3 animals were treated with injections of saline, 0.1 or 10.0 mg/kg lorglumide or LY-225910 before an injection of a fixed MC dose (2.0 mg/kg). Both lorglumide and PD-135,158 induced a significant shift to the left in the morphine dose-response curves as well as a significant decrease in ED50 of the STR. ED50 for lorglumide was significantly lower than ED50 for PD-135,158. Both doses of lorglumide and the highest dose of LY-225910 significantly increased the percent of animals displaying STR. Experiment 4 was undertaken to determine whether repeated peripheral injections of morphine or the morphine-potentiating agents CCK(1) (lorglumide) and the CCK(2) (LY-225910) receptor antagonists can induce morphine sensitization. Each animal was treated with 5 daily i.p. injections of saline (control group), 1.5 mg/Kg morphine hydrochloride (group morphine), and 1.0 mg/Kg lorglumide (group LOR) or LY-225910 (group LY). One, two, three and four weeks after the last treatment day, all animals were challenged with one i.p. injection of morphine (1.5 mg/Kg). The morphine, LOR groups and group LY showed a significant increase in percentage of animals displaying STR. These data demonstrate that the blockade of endogenous CCK actions leads to morphine sensitization probably through both CCK receptors. The present data are consistent with the antagonistic effects of CCK and opioids in the control of morphine-induced STR. In addition, these results suggest that both CCK receptors are involved in the modulatory effects of CCK on this morphine effect.  相似文献   

4.
Using whole cell patch clamp in thin brain stem slices, we tested the effects of cholecystokinin (CCK) on identified gastric-projecting neurons of the rat dorsal motor nucleus of the vagus (DMV). Perfusion with the sulfated form of CCK octapeptide (CCK8s, 30 pM-300 nM, EC50 approximately 4 nM) induced a concentration-dependent inward current in 35 and 41% of corpus- and antrum/pylorus-projecting DMV neurons, respectively. Conversely, none of the fundus-projecting DMV neurons responded to perfusion with CCK8s. The CCK8s-induced inward current was accompanied by a 65 +/- 17% increase in membrane input resistance and reversed at 90 +/- 4 mV, indicating that the excitatory effects of CCK8s were mediated by the closure of a potassium conductance. Pretreatment with the synaptic blocker TTX (0.3-1 microM) reduced the CCK8s-induced current, suggesting that a portion of the CCK8s-induced current was mediated indirectly via an action on presynaptic neurons apposing the DMV membrane. Pretreatment with the selective CCK-A receptor antagonist lorglumide (0.3-3 microM) attenuated the CCK8s-induced inward current in a concentration-dependent manner, with a maximum inhibition of 69 +/- 12% obtained with 3 microM lorglumide. Conversely, pretreatment with the selective CCK-B antagonist triglumide did not attenuate the CCK8s-induced inward current; pretreatment with triglumide (3 microM) and lorglumide (1 microM) attenuated the CCK8s-induced current to the same extent as pretreatment with lorglumide alone. Immunohistochemical experiments showed that CCK-A receptors were localized on the membrane of 34, 65, and 60% of fundus-, corpus-, and antrum/pylorus-projecting DMV neurons, respectively. Our data indicate that CCK-A receptors are present on a subpopulation of gastric-projecting neurons and that their activation leads to excitation of the DMV membrane.  相似文献   

5.
We previously reported that a bioactive tripeptide Arg-Ile-Tyr (RIY), which has been isolated as an inhibitor for angiotensin I-converting enzyme from the subtilisin digest of rapeseed protein, decreased blood pressure. In this study, we also found that RIY dose-dependently decreased food intake at a dose of 150 mg/kg after oral administration in fasted ddY male mice. The anorexigenic action of RIY was blocked by a cholecystokinin-1 CCK1 receptor antagonist, lorglumide. RIY also decreased the gastric emptying rate at a dose of 150 mg/kg and the RIY-induced delay of gastric emptying was blocked by lorglumide. However, RIY had no affinity for CCK1 receptor. Taken together, RIY decreased food intake and gastric emptying by stimulating CCK release.  相似文献   

6.
Hayes MR  Covasa M 《Peptides》2005,26(11):2322-2330
Cholecystokinin (CCK) and serotonin (5-HT) systems have been shown to cooperate interdependently in control of food intake. To assess mechanisms by which CCK and 5-HT systems interact in control of food intake we examined: (1) participation of CCK-1 and 5-HT3 receptors in 5-HT-induced suppression of sucrose intake; (2) the interaction between CCK and 5-HT in suppression of food intake; (3) the role of CCK-1 and 5-HT3 receptors in mediating this interaction. Intraperitoneal administration of 5-HT (0.25, 0.5 and 1.0 mg/kg) significantly reduced intake compared to control in a dose responsive fashion (r2=0.989). Suppression of food intake by 5-HT was significantly attenuated by prior treatment with the 5-HT3 receptor antagonist ondansetron at each 5-HT dose tested (P<0.05), while blockade of CCK-1 receptors by lorglumide had no effect on 5-HT-induced suppression of intake. Administration of CCK-8 (0.5 microg/kg) or 5-HT (0.5 mg/kg) alone significantly reduced sucrose intake by 22.9 and 22.2% respectively, compared to control (P<0.0001). Co-administration of CCK and 5-HT resulted in a synergistic suppression of intake leading to an overall 48.4% reduction in sucrose intake compared to saline (P<0.0001). Concomitant CCK-1 and 5-HT3 receptor blockade by lorglumide and ondansetron respectively, resulted in a complete reversal of the combined CCK and 5-HT-induced suppression of intake. Independent administration of lorglumide or ondansetron did not alter intake compared to control. These studies provide evidence that 5-HT causes suppression in food intake by acting at 5-HT3, not CCK-1 receptors. Furthermore, CCK and 5-HT interact to produce an enhanced suppression of food intake, an effect mediated through concomitant activation of CCK-1 and 5-HT3 receptors.  相似文献   

7.
The effect of a novel CCK-antagonist (lorglumide, CR 1409) was evaluated by "in vitro" tensiometric studies on 16 human (gallstone patients) and 12 guinea pig gallbladder smooth muscle strips. In the animal experiments, increasing doses of lorglumide (0.2-6.5 uM) caused a rightward shift of the dose-response curves of CCK-OP, with an increase of the ED50 from 8.2 nM +/- 1.62 SEM, n = 12; to 100 nM +/- 12, n = 4) without affecting the maximal effect (Emax). Schild plot gave an affinity constant of 7.19. In human gallbladders, the effect of lorglumide was also present (ED50 increased from 47 nM +/- 8 SEM, n = 16; to 300 nM +/- 10 SEM, n = 4) coexisting with a large inter-sample variation for CCK-OP ED50s and maximal contractions, most likely due to the histological changes of the wall in chronic cholecystitis. The affinity constant was similar to that found in animal experiments. We confirm the studies previously reported in animals on the existence of a competitive antagonism of lorglumide on CCK gallbladder receptors. Moreover, our results on gallbladders from gallstone patients show that lorglumide is a highly effective antagonist of CCK-induced contractions despite the presence of chronic cholecystitis. Our study might help for a better comprehension of the role of these new anti-CCK drugs in the treatment of biliary pain.  相似文献   

8.
Rapakinin, Arg-Ile-Tyr, is a vasorelaxing, anti-hypertensive and anorexigenic peptide derived from rapeseed napin. In this study, we found that rapakinin intracerebroventricularly administered to mice inhibited the analgesic effect of morphine, evaluated by the tail-pinch test. The anti-opioid activity of rapakinin was blocked by LY225910, an antagonist of the cholecystokinin (CCK) CCK2 receptor, but not by lorglumide, an antagonist of the CCK1 receptor. The anti-opioid activity of rapakinin was also blocked by CAY10441, an antagonist of the prostaglandin (PG) IP receptor. These results suggest that the anti-opioid activity of rapakinin is mediated by the CCK2 and IP receptors. The anti-opioid activity induced by ciprostene, an IP receptor agonist, was blocked by LY225910, while that of CCK-8 was not blocked by CAY10441. Thus, it is demonstrated that the CCK-CCK2 system was activated downstream of the PGI2-IP receptor system. Taken together, rapakinin shows anti-opioid activity via the activation of the PGI2-IP receptor system followed by the CCK-CCK2 receptor system.  相似文献   

9.
Cholecystokinin (CCK) is a gastrointestinal hormone, which regulates many physiological functions such as satiety by binding to the CCK receptor (CCKR). Molecules, which recognize this receptor can mimic or block CCK signaling and thereby influence CCKR-mediated processes. We have set up a quantitative heterologous assay with CHO cells over-expressing the rat CCK1 receptor to screen for such candidate molecules. Receptor activation, induced by agonist binding, is followed by an intracellular calcium increase, which was monitored using a fluorescent sensor dye. For quantification of the calcium increase, a population average technique using a fluorescence plate reader was optimized and subsequently compared with a single-cell approach using confocal microscopy. With both strategies, dose-response curves were generated for the natural agonist CCK-8S, the partial agonist JMV-180 as well as the antagonist lorglumide. Significant differences were found between the ligands and a strong correspondence was observed between both methods in terms of maximum response and median effect concentrations. Both highly sensitive methods proved complementary: whereas the plate reader assay allowed faster, high throughput screening, the confocal microscopy identified single-cell variations and revealed factors that reduce specificity and sensitivity.  相似文献   

10.
Apolipoprotein AIV (apo AIV) and cholecystokinin (CCK) are peptides that act both peripherally and centrally to reduce food intake by decreasing meal size. The present study examined the effects of intraperitoneally administered bolus doses of recombinant apo AIV, CCK-8, and a combination of subthreshold doses of apo AIV and CCK on 4-h food intake in rats that were fasted overnight. Apo AIV at 100 microg/kg reduced food intake significantly relative to the saline control for 1 h, as did doses of CCK-8 at or above 0.125 microg/kg. Doses of apo AIV (50 microg/kg) or CCK (0.06 microg/kg) alone had no effect on food intake. However, when these subthreshold doses of apo AIV and CCK were administered together, the combination produced a significant inhibition of food intake relative to saline controls (P < 0.001), and the duration of the effect was longer than that caused by the administration of either apo AIV or CCK alone. The satiation effect produced by CCK-8 + apo AIV was attenuated by lorglumide, a CCK1 receptor antagonist. We conclude that, whereas the intraperitoneal administration of doses of either recombinant apo AIV or CCK at or above threshold levels reduces food intake, the coadministration of subthreshold doses of the two peptides is highly satiating and works via CCK1 receptor.  相似文献   

11.
Previous work indicates that the antianalgesic action of pentobarbital and neurotensin administered intracerebroventricularly in mice arises from activation of a descending system to release cholecystokinin (CCK) in the spinal cord where CCK is known to antagonize morphine analgesia. Spinal dynorphin, like CCK, has an antianalgesic action against intrathecally administered morphine. This dynorphin action is indirect; even though it is initiated in the spinal cord, it requires the involvement of an ascending pathway to the brain and a descending pathway to the spinal cord where an antianalgesic mediator works. The aim of the present investigation was to determine if the antianalgesic action of intrathecal dynorphin A involved spinal CCK. All drugs were administered intrathecally to mice in the tail flick test. Morphine analgesia was inhibited by dynorphin as shown by a rightward shift of the morphine dose-response curve. The effect of dynorphin was eliminated by administration of the CCK receptor antagonists lorglumide and PD135 158. One hour pretreatment with CCK antiserum also eliminated the action of dynorphin. On the other hand, the antianalgesic action of CCK was not affected by dynorphin antiserum. Thus, CCK did not release dynorphin. Both CCK and dynorphin were antianalgesic against DSLET but not DPDPE, delta 2 and delta 1 opioid receptor peptide agonists, respectively. The results suggest that the antianalgesic action of dynorphin occurred through an indirect mechanism ultimately dependent on the action of spinal CCK.  相似文献   

12.
Enterostatin, a pentapeptide released from the exocrine pancreas and gastrointestinal tract, selectively inhibits fat intake through activation of an afferent vagal signaling pathway. This study investigated if the effects of enterostatin were mediated through a CCK-dependent pathway. The series of in vivo and in vitro experiments included studies of 1) the feeding effect of peripheral enterostatin on Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors, 2) the effect of CCK-8S on the intake of a two-choice high-fat (HF)/low-fat (LF) diet, 3) the effects of peripheral or central injection of the CCK-A receptor antagonist lorglumide on the feeding inhibition induced by either central or peripheral enterostatin, and 4) the ability of enterostatin to displace CCK binding in a 3T3 cell line expressing CCK-A receptor gene and in rat brain sections. The results showed that OLTEF rats did not respond to enterostatin (300 microg/kg ip) in contrast to the 23% reduction in intake of HF diet in Long Evans Tokushima Otsuka (LETO) control rats. CCK (1 microg/kg ip) decreased the intake of the HF diet in a two-choice diet regime with a compensatory increase in intake of the LF diet. Peripheral injection of lorglumide (300 microg/kg) blocked the feeding inhibition induced by either near-celiac arterial or intracerebroventricular enterostatin, whereas intracerebroventricular lorglumide (5 nmol icv) only blocked the response to intracerebroventricular enterostatin but not to arterial enterostatin. Enterostatin did not bind on CCK-A receptors because neither enterostatin nor its analogs VPDPR and beta-casomorphin displaced [3H]L-364,718 from CCK-A receptors expressed in 3T3 cells or the binding of 125I-CCK-8S from rat brain sections. The data suggest that both the peripheral and central responses to enterostatin are mediated through or dependent on peripheral and central CCK-A receptors.  相似文献   

13.
Cholecystokinin (CCK) and its receptor subtypes CCK-1 and -2 have diverse homeostatic functions. CCK-1 and -2 receptors share a common phosphatidylinositol signaling pathway, yet little is known regarding their possible functional coupling. We focused on CCK-mediated Ca2+ signaling in parvocellular paraventricular nucleus (PVN) cells, which control satiety and other autonomic functions. Analysis of mouse hypothalamic slices demonstrated that the general CCK receptor agonist CCK-8s (10 nm) triggered Ca2+ transients most significantly in the posterior subregion of the PVN (PaPo). This 10 nm CCK-8s-induced response was absent in CCK-1 receptor knock-out (CCK1R−/−) slices, showing that the response is mediated by CCK-1 receptors. CCK-8s concentrations higher than 30 nm triggered a Ca2+ rise similarly in wild-type and CCK1R−/− slices. The large CCK-8s (100 nm)-induced Ca2+ responses in CCK1R−/− slices were blocked by a CCK-2 receptor antagonist (CI-988), whereas those in wild-type slices required a mixture of CI-988 and lorglumide (a CCK-1 receptor antagonist) for complete antagonism. Therefore, CCK-1 and -2 receptors may function synergistically in single PaPo neurons and deletion of CCK-1 receptors may facilitate CCK-2 receptor signaling. This hypothesis was supported by results of real-time RT-PCR, immunofluorescence double labeling and Western blotting assays, which indicated CCK-2 receptor overexpression in PaPo neurons of CCK1R−/− mice. Furthermore, behavioral studies showed that intraperitoneal injections of lorglumide up-regulated food accesses in wild-type but not in CCK1R−/− mice, whereas CI-988 injections up-regulated food accesses in CCK1R−/− but not in wild-type mice. Compensatory CCK signaling via CCK-2 receptors in CCK1R−/− mice shed light on currently controversial satiety-controlling mechanisms.  相似文献   

14.
The effects of juice from Morinda citrifolia (noni) on gastric emptying, gastrointestinal transit, and plasma level of cholecystokinin (CCK) in rats were studied. Male rats were given noni by gavage at levels of 0.25, 1, or 4 ml/kg once per day for one or 7 days. The rats in the control group were given water, while the rats in the experimental group were fasted overnight before measurement of gastrointestinal motility. Gastrointestinal motility was assessed in rats 15 min after intragastric instillation of a test meal containing charcoal (10%) and Na251CrO4 (0.5 microCi/ml). Gastric emptying was determined by measuring the amount of radiolabeled chromium contained in the small intestine as a percentage of the initial amount received. Then, gastrointestinal transit was evaluated by calculating the geometric center of distribution of the radiolabeled marker. Finally, blood samples were collected for measurement of CCK by radioimmunoassay. The administration of noni at 0.25 ml/kg, but not at 1 ml/kg and 4 ml/kg, for 1 day significantly inhibited gastric emptying. In contrast, gastric emptying was significantly inhibited by oral noni (0.25, 1, or 4 ml/kg) for 7 days. Intraperitoneal injection of lorglumide (5 or 10 mg/kg), a selective CCK1 receptor antagonist, effectively attenuated the noni-induced inhibition of gastric emptying. The intestinal transit and body weight, food intake, water intake, urine volume as well as feces weight were not altered by the administration of noni either acutely or chronically, but the administration of oral noni (1 ml/kg) for 7 days increased the level of plasma CCK in male rats. These results suggest that oral noni inhibits gastric emptying in male rats via a mechanism involving stimulation of CCK secretion and CCK1 receptor activation.  相似文献   

15.
Kim SK  Bae H  Lee G  Jeong H  Woo HS  Han JB  Kim Y  Lee H  Shin MK  Hong MC  Jin YH  Min BI 《Peptides》2008,29(4):564-570
A major satiety hormone, cholecystokinin (CCK) is well known to be released by electroacupuncture (EA) stimulation at certain body sites which elicits profound psychophysiological responses. Previous clinical and animal studies have shown that EA stimulation reduces food intake and body weight in both normal and obese subjects. The aim of the present study was to elucidate the satiety effect of EA stimulation and its mechanism related to CCK in rats. Here we show that EA stimulation at "Zusanli" (ST36) acupoint significantly reduced 30-min and 60-min food intake in 48-h fasted Sprague-Dawley rats, and such effect was reversed by a lorglumide (CCK-1 receptor antagonist, 10mg/kg, i.p.) pretreatment. The ST36 EA stimulation-induced satiety was not observed in CCK-1 receptor knockout, Otsuka Long-Evans Tokushima Fatty rats, but in their controls, Long-Evans Tokushima Otsuka rats. Subdiaphragmatic vagotomy also blocked the satiety effect of ST36 EA stimulation in Sprague-Dawley rats. These results suggest that ST36 EA stimulation elicits satiety in rats and this is mediated by the endogenous CCK signaling pathway.  相似文献   

16.
We performed anatomical and physiological studies to determine the site and actions of sulfated cholecystokinin octapeptide (CCK8-S) on breathing. Peptide locations were determined by combined immunodetection of CCK8-S- containing synaptic varicosities and retrograde labeling of medullary neurons projecting to the ventral respiratory group. Retrogradely labeled neurons and CCK8-S immunolabeled varicosities overlapped within the nuclei of the solitary tract, ventral respiratory group, and the Kolliker-Fuse nucleus. Additional CCK8-S immunoreactive terminals were located in the rostroventrolateral medullary reticular nucleus, lateral paragigantocellular reticular nucleus, and the caudal pontine reticular nucleus. The respiratory effects of CCK8-S, which binds to CCK(A) and CCK(B) receptors, were examined by intravenous injection in adult rats and by bath application in the in vitro neonatal rat brainstem - spinal cord preparation. CCK8-S produced an increase in the mean amplitude of diaphragmatic electromyogram (EMG) of 28 +/- 35% (SD) and a decrease in mean respiratory interval of 13 +/- 4% in vivo. In vitro, CCK8-S significantly increased inspiratory duration and decreased respiratory interval, primarily by shortening expiratory duration. CCK8-unsulfated, a specific agonist for CCK(B) receptors, did not produce these effects. CCK8-S effects in the in vitro preparation were partially blocked by the CCK receptor antagonist lorglumide (final bath concentration 600 nM). These results suggest that CCK8-S modulates the respiratory rhythm via CCK(A) receptors within one or more medullary or pontine respiratory groups in both neonatal and adult rats.  相似文献   

17.
Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.  相似文献   

18.
The mechanisms involved in the mediation of the inhibitory effects of ethanol on gastric emptying were studied in adult male rats. The gastric emptying was determined by measuring the amount of phenol red recovered from the stomach after intragastric administration. Intragastric administration of a 2.5 g kg(-1) body weight dose of ethanol resulted in inhibition of the gastric emptying. Prior intraperitoneal treatment with lorglumide (CR-1409), a selective CCK-A receptor antagonist, abolished the inhibitory effect of ethanol on the gastric emptying. This observation furnishes evidence indicative of the involvement of type A CCK receptors in the mediation of the inhibitory effect of large doses of ethanol on the gastric emptying.  相似文献   

19.
The effect of luminal ghrelin on pancreatic enzyme secretion in the rat   总被引:1,自引:0,他引:1  
Ghrelin, a 28-amino-acid peptide produced predominantly by oxyntic mucosa has been reported to affect the pancreatic exocrine function but the mechanism of its secretory action is not clear. The effects of intraduodenal (i.d.) infusion of ghrelin on pancreatic amylase outputs under basal conditions and following the stimulation of pancreatic secretion with diversion of pancreato-biliary juice (DPBJ) as well as the role of vagal nerve, sensory fibers and CCK in this process were determined. Ghrelin given into the duodenum of healthy rats at doses of 1.0 or 10.0 microg/kg increased pancreatic amylase outputs under basal conditions or following the stimulation of pancreatic secretion with DPBJ. Bilateral vagotomy as well as capsaicin deactivation of sensory fibers completely abolished all stimulatory effects of luminal ghrelin on pancreatic exocrine function. Pretreatment with lorglumide, a CCK(1) receptor blocker, reversed the stimulation of amylase release produced by intraduodenal application of ghrelin. Intraduodenal ghrelin at doses of 1.0 or 10.0 microg/kg increased plasma concentrations of CCK and ghrelin. In conclusion, ghrelin given into the duodenum stimulates pancreatic enzyme secretion. Activation of vagal reflexes and CCK release as well as central mechanisms could be implicated in the stimulatory effect of luminal ghrelin on the pancreatic exocrine functions.  相似文献   

20.
Localization of cholecystokinin receptor subtypes in the endocine pancreas.   总被引:3,自引:0,他引:3  
This study was undertaken to clarify the controversy in the literature about pancreatic localization of the cholecystokinin (CCK) CCK(A) and CCK(B) receptors. With antibodies used by other investigators, we first established their specificity by Western blotting, indirect immunofluorescence, and confocal microscopy with each antibody's peptide antigen. Co-localization assays between the CCK receptors and the pancreatic hormones insulin, glucagon, and somatostatin revealed that the CCK(A) RAbs 1122 and R1-2 recognized insulin and glucagon cells in rat, pig, and human pancreas but not in the somatostatin cells. Conversely, the three CCK(B) RAbs tested, 9262, 9491, and GR4, identified the somatostatin cells. Abs 9491 and GR4 occasionally co-localized with glucagon, a feature that never occurred with Ab 9262. Finally, the specificity of Ab 9262 for the pancreatic CCK(B) R was confirmed in six different species. It co-localized with somatostatin but never with glucagon in these species. Our data suggest the use of Abs 1122 and 9262 to specifically identify and localize pancreatic CCK(A) and CCK(B) receptors, respectively. Confusion in the literature may result from the lack of specificity of most antibodies used, as established in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号