共查询到20条相似文献,搜索用时 0 毫秒
1.
Leslie CC 《Prostaglandins, leukotrienes, and essential fatty acids》2004,70(4):373-376
Cytosolic phospholipase A(2) alpha (cPLA(2)alpha) is the only PLA(2) that exhibits specificity for sn-2 arachidonic acid consistent with its primary role in mediating the agonist-induced release of arachidonic acid for eicosanoid production. It is subject to complex mechanisms of regulation that ensure that levels of free arachidonic acid are tightly controlled. The calcium-induced translocation of cPLA(2)alpha from the cytosol to membrane regulates its interaction with phospholipid substrate. cPLA(2)alpha is additionally regulated by phosphorylation on sites in the catalytic domain. Because of its central position as the upstream regulatory enzyme for initiating production of several classes of bioactive lipid mediators (leukotrienes, prostaglandins and platelet-activating factor), it is a potentially important pharmacological target for the control of inflammatory diseases. 相似文献
2.
Marshall J Krump E Lindsay T Downey G Ford DA Zhu P Walker P Rubin B 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(4):2084-2091
The purpose of this study was to define the role of secretory phospholipase A2 (sPLA2), calcium-independent PLA2, and cytosolic PLA2 (cPLA2) in arachidonic acid (AA) release from fMLP-stimulated human neutrophils. While fMLP induced the release of extracellular sPLA2 activity and AA, 70% of sPLA2 activity remained associated with the cell. Treatment with the cell-impermeable sPLA2 inhibitors DTT or LY311-727, or the anti-sPLA2 Ab 3F10 all inactivated extracellular sPLA2 activity, but had minimal effect on neutrophil AA mass release. In contrast, coincubation of streptolysin-O toxin-permeabilized neutrophils with DTT, LY311-727, or 3F10 all decreased [3H8]AA release from [3H8]AA-labeled, fMLP-stimulated cells. Exposure to fMLP resulted in a decrease in the electrophoretic mobility of cPLA2, a finding consistent with cPLA2 phosphorylation, and stimulated the translocation of cPLA2 from cytosolic to microsomal and nuclear compartments. The role of cPLA2 was further evaluated with the cPLA2 inhibitor methyl arachidonyl fluorophosphonate, which attenuated cPLA2 activity in vitro and decreased fMLP-stimulated AA mass release by intact neutrophils, but had no effect on neutrophil sPLA2 activity. Inhibition of calcium-independent PLA2 with haloenol lactone suicide substrate had no effect on neutrophil cPLA2 activity or AA mass release. These results indicate a role for cPLA2 and an intracellular or cell-associated sPLA2 in the release of AA from fMLP-stimulated human neutrophils. 相似文献
3.
Saiga A Uozumi N Ono T Seno K Ishimoto Y Arita H Shimizu T Hanasaki K 《Prostaglandins & other lipid mediators》2005,75(1-4):79-89
Group X secretory phospholipase A2 (sPLA2-X) and cytosolic phospholipase A2 alpha (cPLA2alpha) are involved in the release of arachidonic acid (AA) from membrane phospholipids linked to the eicosanoid production in various pathological states. Recent studies have indicated the presence of various types of cross-talk between sPLA2s and cPLA2alpha resulting in effective AA release. Here we examined the dependence of sPLA2-X-induced potent AA release on the cPLA2alpha activation by using specific cPLA2alpha or sPLA2 inhibitors as well as cPLA2alpha-deficient mice. We found that Pyrrophenone, a cPLA2alpha-specific inhibitor, did not suppress the sPLA2-X-induced potent AA release and prostaglandin E2 formation in mouse spleen cells. Furthermore, the amount of AA released by sPLA2-X from spleen cells was not significantly altered by cPLA2alpha deficiency. These results suggest that sPLA2-X induces potent AA release without activation of cPLA2a, which might be relevant to eicosanoid production in some pathological states where cPLA2a is not activated. 相似文献
4.
To determine if lysophosphatidylcholine (lysoPC) is able to induce proinflammatory changes in monocytes, its ability to stimulate arachidonic acid (AA) release, a product of phospholipase A2 (PLA(2)) activity, has been analyzed. LysoPC increased AA release in THP-1 and Mono Mac6 cells in a time- and concentration-dependent manner. The monocytes expressed both secretory and cytosolic PLA(2) enzymes and AA release was strongly reduced by cellular pretreatment with different PLA(2) inhibitors and by pertussis toxin, an inhibitor of G(i)-protein activation. This indicates that both cytosolic and secretory PLA(2) enzymes regulate specific lysoPC receptor-induced AA release, suggesting lysoPC participation in monocyte proinflammatory activation. 相似文献
5.
Palomba L Bianchi M Persichini T Magnani M Colasanti M Cantoni O 《Free radical biology & medicine》2004,36(3):319-329
Exposure of PC12 cells to A23187 or thapsigargin caused a concentration-dependent release of arachidonic acid (AA) mediated by cytosolic phospholipase A2 (PLA2). Under the same conditions, however, analysis of nitric oxide (NO) formation revealed that activation of NO synthase (NOS) is best described by a bell-shaped curve. Reduced detection of NO observed at increasing A23187 or thapsigargin concentrations was not due to formation of peroxynitrite or to activation of NO-consuming processes, but rather to AA-dependent inhibition of NOS activity. Furthermore, NO formation observed under optimal conditions for NOS activity was suppressed by AA as well as by the PLA2 activator melittin. Finally, the effects of AA were not the consequence of direct enzyme inhibition, because this lipid messenger failed to inhibit formation of NO by purified neuronal NOS, but were mediated by an AA-dependent signaling and not by downstream products of the cyclooxygenase and lipoxygenase pathways. In conclusion, the present study underscores a novel mechanism whereby endogenous, or exogenous, AA promotes inhibition of NOS activity. Because AA is generated in response to various agonists acting on membrane receptors and extensively released in inflammatory conditions, these findings have important physiopathological implications. 相似文献
6.
Chan Alvin C. Wagner Michelle Kennedy Chris Chen Eve Lanuville Odette Mezl Vasek A. Tran Khai Choy Patrick C. 《Molecular and cellular biochemistry》1998,185(1-2):153-159
The alteration in calcium transport in the liver nuclei of rats orally administered carbon tetrachloride (CCl4) was investigated. Rats received a single oral administration of CCl4(5, 10, and 25%, 1.0ml/100 g body weight), and 5, 24 and 48 h later the animals were sacrificed. The administration of CCl4 (25%) caused a remarkable elevetion of calcium content in the liver tissues and the nuclei of rats. Liver nuclear Ca2+-ATPase activity was markedly decreased by CCl4 (25%) administration. The presence of dibutyryl cyclic AMP(10-4 and 10-3 M) or inositol 1,4,5-trisphosphate (10-6 and 10-5 M) in the enzyme reaction mixture caused a significant decrease in Ca2+-ATPase activity in the liver nuclei obtained from normal rat, while the enzyme activity was significantly increased by calmodulin (1.0 and 2.0 g/ml). These signaling factor's effects were completely impaired in the liver nuclei obtained from CCl4 (25%)-administered rats. DNA fragmentation in the liver nuclei obtained from CCl4 -administered rats was significantly decreased by the presence of EGTA (2 mM) in the reaction mixture, suggesting that the endogenous calcium activates nuclear DNA fragmentation. The present study demonstrates that calcium transport system in the liver nuclei is impaired by liver injury with CCl4 administration in rats. 相似文献
7.
Katherine E. Ward James P. Ropa Emmanuel Adu-Gyamfi Robert V. Stahelin 《Journal of lipid research》2012,53(12):2656-2666
Group IVA cytosolic phospholipase A2 (cPLA2α) is an 85 kDa enzyme that regulates the release of arachidonic acid (AA) from the sn-2 position of membrane phospholipids. It is well established that cPLA2α binds zwitterionic lipids such as phosphatidylcholine in a Ca2+-dependent manner through its N-terminal C2 domain, which regulates its translocation to cellular membranes. In addition to its role in AA synthesis, it has been shown that cPLA2α promotes tubulation and vesiculation of the Golgi and regulates trafficking of endosomes. Additionally, the isolated C2 domain of cPLA2α is able to reconstitute Fc receptor-mediated phagocytosis, suggesting that C2 domain membrane binding is sufficient for phagosome formation. These reported activities of cPLA2α and its C2 domain require changes in membrane structure, but the ability of the C2 domain to promote changes in membrane shape has not been reported. Here we demonstrate that the C2 domain of cPLA2α is able to induce membrane curvature changes to lipid vesicles, giant unilamellar vesicles, and membrane sheets. Biophysical assays combined with mutagenesis of C2 domain residues involved in membrane penetration demonstrate that membrane insertion by the C2 domain is required for membrane deformation, suggesting that C2 domain-induced membrane structural changes may be an important step in signaling pathways mediated by cPLA2α. 相似文献
8.
Amyloid beta enhances cytosolic phospholipase A2 level and arachidonic acid release via nitric oxide in APP-transfected PC12 cells 总被引:1,自引:0,他引:1
Chalimoniuk M Stolecka A Cakała M Hauptmann S Schulz K Lipka U Leuner K Eckert A Muller WE Strosznajder JB 《Acta biochimica Polonica》2007,54(3):611-623
Cytosolic phospholipase A2 (cPLA2) preferentially liberates arachidonic acid (AA), which is known to be elevated in Alzheimer's disease (AD). The aim of this study was to investigate the possible relationship between enhanced nitric oxide (NO) generation observed in AD and cPLA2 protein level, phosphorylation, and AA release in rat pheochromocytoma cell lines (PC12) differing in amyloid beta secretion. PC12 control cells, PC12 cells bearing the Swedish double mutation in amyloid beta precursor protein (APPsw), and PC12 cells transfected with human APP (APPwt) were used. The transfected APPwt and APPsw PC12 cells showed an about 2.8- and 4.8-fold increase of amyloid beta (Abeta) secretion comparing to control PC12 cells. An increase of NO synthase activity, cGMP and free radical levels in APPsw and APPwt PC12 cells was observed. cPLA2 protein level was higher in APPsw and APPwt PC12 cells comparing to PC12 cells. Moreover, phosphorylated cPLA2 protein level and [3H]AA release were also higher in APP-transfected PC12 cells than in the control PC12 cells. An NO donor, sodium nitroprusside, stimulated [3H]AA release from prelabeled cells. The highest NO-induced AA release was observed in control PC12 cells, the effect in the other cell lines being statistically insignificant. Inhibition of cPLA2 by AACOCF3 significantly decreased the AA release. Inhibitors of nNOS and gamma-secretase reduced AA release in APPsw and APPwt PC12 cells. The basal cytosolic [Ca2+](i) and mitochondrial Ca2+ concentration was not changed in all investigated cell lines. Stimulation with thapsigargin increased the cytosolic and mitochondrial Ca2+ level, activated NOS and stimulated AA release in APP-transfected PC12 cells. These results indicate that Abeta peptides enhance the protein level and phosphorylation of cPLA2 and AA release by the NO signaling pathway. 相似文献
9.
Damaging reactive oxygen species are released during episodes of ischemia and reperfusion. Some cellular adaptive responses are triggered to protect the injured organ, while other cascades are triggered which potentiate the damage. In these studies, we demonstrate that rat cardiomyocte H9c2 cells release arachidonic acid in response to hydrogen peroxide. In H9c2 cells, arachidonic acid release is attenuated by methyl arachidonyl fluorophosphonate (MAFP) and pyrrophenone, indicating that a phospholipase A2 Group IV enzyme mediates arachidonic acid mobilization. Moreover, hydrogen peroxide alters the cellular morphology of the H9c2 cells, causing drastic cell shrinkage. Because MAFP and pyrrophenone prevent the morphological alterations caused by hydrogen peroxide, these studies show that phospholipase A2 Group IV activity is likely integrally involved in the damage initiated by hydrogen peroxide. 相似文献
10.
Type II phospholipase A2 recombinant overexpression enhances stimulated arachidonic acid release 总被引:4,自引:0,他引:4
P Pernas J Masliah J L Olivier C Salvat T Rybkine G Bereziat 《Biochemical and biophysical research communications》1991,178(3):1298-1305
The coding sequence of type II phospholipase A2 from human placenta was cloned in a bovine papilloma virus-derived eukaryotic expression vector under the control of the metallothionein promoter. Stably transfected C127 mouse fibroblast lines were obtained with this vector. These transfected cells overexpressed a functional 14 kDa phospholipase A2, which was bulky secreted. However, a significant phospholipase A2 activity was measured in cell homogenates. The involvement of this 14 kDa phospholipase A2 in mechanisms related to stimulated arachidonic acid release was investigated. We could parallel the overexpression of phospholipase A2 with an increase in phorbol ester and fluoroaluminate-stimulated arachidonic acid release. Pertussis toxin inhibited this stimulation. These results suggest that the 14 kDa type II phospholipase A2 might contribute to stimulation of arachidonic acid release, and therefore to eicosanoid production. 相似文献
11.
Pettus BJ Bielawska A Spiegel S Roddy P Hannun YA Chalfant CE 《The Journal of biological chemistry》2003,278(40):38206-38213
Despite the importance of prostaglandins, little is known about the regulation of prostanoid synthesis proximal to the activation of cytosolic phospholipase A2, the initial rate-limiting step. In this study, ceramide-1-phosphate (C-1-P) was shown to be a specific and potent inducer of arachidonic acid (AA) and prostanoid synthesis in cells. This study also demonstrates that two well established activators of AA release and prostanoid synthesis, the cytokine, interleukin-1beta (IL-1beta), and the calcium ionophore, A23187, induce an increase in C-1-P levels within the relevant time-frame of AA release. Furthermore, the enzyme responsible for the production of C-1-P in mammalian cells, ceramide kinase, was activated in response to IL-1beta and A23187. RNA interference targeted to ceramide kinase specifically down-regulated ceramide kinase mRNA and activity with a concomitant decrease of AA release in response to IL-1beta and A23187. Down-regulation of ceramide kinase had no effect on AA release induced by exogenous C-1-P. Collectively, these results indicate that ceramide kinase, via the formation of C-1-P, is an upstream modulator of phospholipase A2 activation. This study identifies previously unknown roles for ceramide kinase and its product, C-1-P, in AA release and production of eicosanoids and provides clues for potential new targets to block inflammatory responses. 相似文献
12.
Pettus BJ Bielawska A Subramanian P Wijesinghe DS Maceyka M Leslie CC Evans JH Freiberg J Roddy P Hannun YA Chalfant CE 《The Journal of biological chemistry》2004,279(12):11320-11326
Recently, we demonstrated that ceramide kinase, and its product, ceramide 1-phosphate (Cer-1-P), were mediators of arachidonic acid released in cells in response to interleukin-1beta and calcium ionophore (Pettus, B. J., Bielawska, A., Spiegel, S., Roddy, P., Hannun, Y. A., and Chalfant, C. E. (2003) J. Biol. Chem. 278, 38206-38213). In this study, we demonstrate that down-regulation of cytosolic phospholipase A(2) (cPLA(2)) using RNA interference technology abolished the ability of Cer-1-P to induce arachidonic acid release in A549 cells, demonstrating that cPLA(2) is the key phospholipase A(2) downstream of Cer-1-P. Treatment of A549 cells with Cer-1-P (2.5 microm) induced the translocation of full-length cPLA(2) from the cytosol to the Golgi apparatus/perinuclear regions, which are known sites of translocation in response to agonists. Cer-1-P also induced the translocation of the CaLB/C2 domain of cPLA(2) in the same manner, suggesting that this domain is responsive to Cer-1-P either directly or indirectly. In vitro studies were then conducted to distinguish these two possibilities. In vitro binding studies disclosed that Cer-1-P interacts directly with full-length cPLA(2) and with the CaLB domain in a calcium- and lipid-specific manner with a K(Ca) of 1.54 microm. Furthermore, Cer-1-P induced a calcium-dependent increase in cPLA(2) enzymatic activity as well as lowering the EC(50) of calcium for the enzyme from 191 to 31 nm. This study identifies Cer-1-P as an anionic lipid that translocates and directly activates cPLA(2), demonstrating a role for this bioactive lipid in the mediation of inflammatory responses. 相似文献
13.
Ghomashchi F Stewart A Hefner Y Ramanadham S Turk J Leslie CC Gelb MH 《Biochimica et biophysica acta》2001,1513(2):160-166
We analyzed a recently reported (K. Seno, T. Okuno, K. Nishi, Y. Murakami, F. Watanabe, T. Matsuur, M. Wada, Y. Fujii, M. Yamada, T. Ogawa, T. Okada, H. Hashizume, M. Kii, S.-H. Hara, S. Hagishita, S. Nakamoto, J. Med. Chem. 43 (2000)) pyrrolidine-based inhibitor, pyrrolidine-1, against the human group IV cytosolic phospholipase A(2) alpha-isoform (cPLA(2)alpha). Pyrrolidine-1 inhibits cPLA(2)alpha by 50% when present at approx. 0.002 mole fraction in the interface in a number of in vitro assays. It is much less potent on the cPLA(2)gamma isoform, calcium-independent group VI PLA(2) and groups IIA, X, and V secreted PLA(2)s. Pyrrolidine-1 blocked all of the arachidonic acid released in Ca(2+) ionophore-stimulated CHO cells stably transfected with cPLA(2)alpha, in zymosan- and okadaic acid-stimulated mouse peritoneal macrophages, and in ATP- and Ca(2+) ionophore-stimulated MDCK cells. 相似文献
14.
X Zhu H Sano K P Kim A Sano E Boetticher N M Mu?oz W Cho A R Leff 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(1):461-468
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4). 相似文献
15.
Han WK Sapirstein A Hung CC Alessandrini A Bonventre JV 《The Journal of biological chemistry》2003,278(26):24153-24163
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release. 相似文献
16.
A major role for phospholipase A2 in antigen-induced arachidonic acid release in rat mast cells. 总被引:1,自引:0,他引:1
下载免费PDF全文

Cross-linking of IgE receptors by antigen stimulation leads to histamine release and arachidonic acid release in rat peritoneal mast cells. Investigators have reported a diverse distribution of [3H]arachidonate that is dependent on labelling conditions. Mast cells from rat peritoneal cavity were labelled with [3H]arachidonic acid for different periods of time at either 30 or 37 degrees C. Optimum labelling was found to be after 4 h incubation with [3H]arachidonate at 30 degrees C, as judged by cell viability (Trypan Blue uptake), responsiveness (histamine release) and distribution of radioactivity. Alterations in 3H-radioactivity distribution in mast cells labelled to equilibrium were examined on stimulation with antigen (2,4-dinitrophenyl-conjugated Ascaris suum extract). The results indicated that [3H]arachidonic acid was lost mainly from phosphatidylcholine and, to a lesser extent, from phosphatidylinositol. A transient appearance of radiolabelled phosphatidic acid and diacylglycerol indicated phosphatidylinositol hydrolysis by phospholipase C. Pretreatment with a phospholipase A2 inhibitor, mepacrine, substantially prevented the antigen-induced liberation of [3H]arachidonic acid from phosphatidylcholine. It can be thus concluded that, in the release of arachidonic acid by antigen-stimulated mast cells, the phospholipase A2 pathway, in which phosphatidylcholine is hydrolysed, serves as the major one, the phospholipase C/diacylglycerol lipase pathway playing only a minor role. 相似文献
17.
Guanine nucleotides stimulate arachidonic acid release by phospholipase A2 in saponin-permeabilized human platelets 总被引:5,自引:0,他引:5
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein. 相似文献
18.
In macrophages and other major immunoinflammatory cells, two phospholipase A(2) (PLA(2)) enzymes act in concert to mobilize arachidonic acid (AA) for immediate PG synthesis, namely group IV cytosolic phospholipase A(2) (cPLA(2)) and a secreted phospholipase A(2) (sPLA(2)). In this study, the molecular mechanism underlying cross-talk between the two PLA(2)s during paracrine signaling has been investigated. U937 macrophage-like cells respond to Con A by releasing AA in a cPLA(2)-dependent manner, and addition of exogenous group V sPLA(2) to the activated cells increases the release. This sPLA(2) effect is abolished if the cells are pretreated with cPLA(2) inhibitors, but is restored by adding exogenous free AA. Inhibitors of cyclooxygenase and 5-lipoxygenase have no effect on the response to sPLA(2). In contrast, ebselen strongly blocks it. Reconstitution experiments conducted in pyrrophenone-treated cells to abolish cPLA(2) activity reveal that 12- and 15-hydroperoxyeicosatetraenoic acid (HPETE) are able to restore the sPLA(2) response to levels found in cells displaying normal cPLA(2) activity. Moreover, 12- and 15-HPETE are able to enhance sPLA(2) activity in vitro, using a natural membrane assay. Neither of these effects is mimicked by 12- or 15-hydroxyeicosatetraenoic acid, indicating that the hydroperoxy group of HPETE is responsible for its biological activity. Collectively, these results establish a role for 12/15-HPETE as an endogenous activator of sPLA(2)-mediated phospholipolysis during paracrine stimulation of macrophages and identify the mechanism that connects sPLA(2) with cPLA(2) for a full AA mobilization response. 相似文献
19.
Ghasemi A Elfringhoff AS Lehr M 《Journal of enzyme inhibition and medicinal chemistry》2005,20(5):429-437
Recently we found that 1-methyldodecanoylindole-2-carboxylic acid (1) and 1-[2-(4-carboxyphenoxy)ethyl]-3-dodecanoylindole-2-carboxylic acid (4) were inhibitors of the cytosolic phospholipase A2alpha (cPLA2alpha)-mediated arachidonic acid release in calcium ionophore A23187-stimulated human platelets with IC50-values of 4.8 microM (1) and 0.86 microM (4). We have now replaced the 3-acyl residue of these compounds by alkylated sulfinyl-, sulfony-, sulfinamoyl-, sulfamoyl-, carbonylamino-, or carbonylaminomethyl-substituents. Structure-activity relationship studies revealed that the pronounced cellular activity of 4 strongly depends on the presence of the 3-acyl moiety. Surprisingly, when testing 4 and its derivatives in an assay with the isolated cPLA2, none of these compounds showed an inhibitory potency at 10 microM indicating that they do not inhibit cPLA2alpha in the cells by a direct interaction with the active site of the enzyme. 相似文献
20.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD. 相似文献