首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence of tryptophan residues in Ca2+--Mg2+-ATPase was studied in the presence of K2PtCl4, K2PdCl4 and 5-sulpho-8-mercaptochinolinate platinum and palladium. It has been shown that both first two compounds quenched the fluorescence dye to bonding with SH-groups in ATPase active centre, but the last two compounds influence the fluorescence by bonding with tryptophan residues. The distance between the SH-groups and tryptophan in the active centre was determined by Foerster--Galanin equation and was equal to 14 +/- 3 A.  相似文献   

2.
Cobalt ion inhibits the Ca2+ + Mg2(+)-ATPase activity of sealed sarcoplasmic reticulum vesicles, of solubilized membranes and of the purified enzyme. To use Co2+ appropriately as a spectroscopic ruler to map functional sites of the Ca2+ + Mg2(+)-ATPase, we have carried out studies to obtain the kinetic parameters needed to define the experimental conditions to conduct the fluorimetric studies. 1. The apparent K0.5 values of inhibition of this ATPase are 1.4 mM, 4.8 mM and 9.5 mM total Co2+ at pH 8.0, 7.0 and 6.0, respectively. The inhibition by Co2+ is likely to be due to free Co2+ binding to the enzyme. Millimolar Ca2+ can fully reverse this inhibition, and also reverses the quenching of the fluorescence of fluorescein-labeled sarcoplasmic reticulum membranes due to Co2+ binding to the Ca2+ + Mg2(+)-ATPase. Therefore, we conclude that Co2+ interacts with Ca2+ binding sites. 2. Co2+.ATP can be used as a substrate by this enzyme with Vmax of 2.4 +/- 0.2 mumol ATP hydrolyzed min-1 (mg protein)-1 at 20-22 degrees C and pH 8.0, and with a K0.5 of 0.4-0.5 mM. 3. Co2+ partially quenches, about 10 +/- 2%, the fluorescence of fluorescein-labeled sarcoplasmic reticulum Ca2+ + Mg2(+)-ATPase upon binding to this enzyme at pH 8.0. From the fluorescence data we have estimated an average distance between Co2+ and fluorescein in the ATPase of 1.1-1.8 nm or 1.3-2.1 nm for one or two equidistant Co2+ binding sites, respectively. 4. Co2+.ATP quenches about 20-25% of the fluorescence of fluorescein-labeled Ca2+ + Mg2(+)-ATPase, from which we obtain a distance of 1.1-1.9 nm between Co2+ and fluorescein located at neighbouring catalytic sites.  相似文献   

3.
Lifetimes of phenylalanine, tyrosine and tryptophan self-fluorescence of three Ca2+-binding proteins (parvalbumins pI 4.47 and 3.95 and bovine alpha-lactalbumin) in the Ca2+-saturated state and without Ca2+ were measured on a device functioning in a channel of synchrotron radiation of the Lebedev Physical Institute electron accelerator C-60 with a single photon counting system. The decay curve of phenylalanine fluorescence of Ca2+-saturated parvalbumin pI 4.47 is two-exponential, which results from the presence of two subsystems of phenylalanine residues in this protein. Radiation of these subsystems is almost independent of one another. Detachment of Ca2+ from protein disturbs these subsystems. In case of tyrosine fluorescence of carp parvalbumin pI 3.95 a change in the quantum yield value of the stationary fluorescence induced by elimination of Ca2+ proceeds without a change of fluorescence lifetime. This seems to be related to the existence of static quenching of fluorescence in this case at the expense of complex formation between the chromophore and some adjacent quenching groups. Detachment of Ca2+ from alpha-lactalbumin induces conformational changes in its structure. The latter result in a transition of a number of tryptophane residues from its interior to the surface of the globule which is reflected in an increase of fluorescence quantum yield duration. It is concluded that in Ca2+-saturated alpha-lactalbumin some tryptophane residues are located near the quenching groups (dynamic quenching), most likely the disulfide bridges.  相似文献   

4.
The topography of HS- and NH2-groups and tryptophane residues in ATPase centre of (Ca--Mg)-ATPase on sarcoplasmic reticulum (SR) was investigated by kinetics, electron spectroscopy and spectrofluorimetry method. Both o-phthalaldehyde interacting with lysine or arginine residue or with end amino acid and fluorescein dimercuric acetate interaction with cysteine residue of HS-groups make (Ca--Mg)-ATPase both in SR and the pure enzyme completely inactive at molar ratio enzyme: inhibitor equal to 1 : 1. A 500 molar ATP surplus reduces drastically the enzyme inactivation rate by both inhibitors. The data supplied by the spectrofluorimetry and the induction-resonance theory were used to calculate the distances between nearest tryptophane residues and chromophore (o-FTC) generated by o-phthalaldehyde interaction with NH2-group the protein amino acid residue (17 A) and o-FTC and fluorescein dimercuric acetate (19 A) attached to enzyme HS-group. Because o-FTC is inside the protein pocket it is not accessible to J- ions up to 2.5 M KJ. However some tryptophane resudies and fluorescein dimercuric acetate attached to HS-group are near to the macromolecule surface. Lysine (or arginine residues) or end amino acid NH2-group and cysteine residues HS-group, and some tryptophane residues are at ATPase centre of (Ca--Mg)-ATPase from sarcoplasmic reticulum. Possible topography of the centre is discussed.  相似文献   

5.
Sarcoplasmic reticulum (SR) Ca2+-ATPase was purified from dog cardiac and rabbit skeletal muscle using Triton X-100 at optimal ratios of 0.5 for cardiac and 0.5 to 1.0 for skeletal SR. The yields of Ca2+-ATPase were 4 to 5 and 1 to 2.2 mg/100 mg of cardiac and skeletal SR protein, respectively. The enzyme activities were 547 +/- 67 mumol ADP/mg/h for cardiac and 1192 +/- 172 mumol ADP/mg/h for skeletal Ca2+-ATPase. Removal of excess Triton X-100 increased the enzyme activities to 719 +/- 70 and 1473 +/- 206 mumol ADP/mg/h, respectively. The residual content of Triton X-100 for cardiac and skeletal Ca2+-ATPase was 20 and 5 mol/mol of enzyme, respectively. Maximum levels of phosphoenzyme were 4.4 +/- 0.2 and 5.6 +/- 0.6 nmol/mg in each case. A single protein band of 100 kDa was obtained for each purified Ca2+-ATPase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparations were stable at -80 degrees C for 5 months in the presence of 1 mM Ca2+. The phospholipid content of the purified enzyme was 2-fold greater than that of native cardiac and skeletal SR microsomes. Repeated washing of the purified enzyme preparation did not alter the phospholipid content or the specific activities.  相似文献   

6.
5-Sulfo-8-mercaptoquinoline complexes of platinum and palladium (complexes I and II) effectively inhibit Ca2+-dependent ATPase from sarcoplasmic reticulum. However, in contrast to K2PtCl4, K2PdCl4 and other previously investigated platinum and palladium complexes, they do not interact with the thiol groups of the enzyme. The inhibiting effects of complexes I and II are reversible and competitive with respect to ATP. In aqueous solutions complexes I and II decrease the fluorescence of tryptophane with a simultaneous shift in fluorescence towards the long-wave region. The same effect is exerted by the complexes on the fluorescence of tryptophane residues in Ca2+-dependent ATPase preparations. An addition of tryptophane to the enzyme preparations preincubated with complexes I and II partly restores the enzyme activity. It is assumed that the inhibiting effect of complexes I and II is due to their non-covalent interactions with the trytophane residues vicinal to the ATPase center.  相似文献   

7.
Prolonged exhaustive submaximal exercise in humans induces marked metabolic changes, but little is known about effects on muscle Na+-K+-ATPase activity and sarcoplasmic reticulum Ca2+ regulation. We therefore investigated whether these processes were impaired during cycling exercise at 74.3 +/- 1.2% maximal O2 uptake (mean +/- SE) continued until fatigue in eight healthy subjects (maximal O2 uptake of 3.93 +/- 0.69 l/min). A vastus lateralis muscle biopsy was taken at rest, at 10 and 45 min of exercise, and at fatigue. Muscle was analyzed for in vitro Na+-K+-ATPase activity [maximal K+-stimulated 3-O-methylfluorescein phosphatase (3-O-MFPase) activity], Na+-K+-ATPase content ([3H]ouabain binding sites), sarcoplasmic reticulum Ca2+ release rate induced by 4 chloro-m-cresol, and Ca2+ uptake rate. Cycling time to fatigue was 72.18 +/- 6.46 min. Muscle 3-O-MFPase activity (nmol.min(-1).g protein(-1)) fell from rest by 6.6 +/- 2.1% at 10 min (P <0.05), by 10.7 +/- 2.3% at 45 min (P <0.01), and by 12.6 +/- 1.6% at fatigue (P <0.01), whereas 3[H]ouabain binding site content was unchanged. Ca2+ release (mmol.min(-1).g protein(-1)) declined from rest by 10.0 +/- 3.8% at 45 min (P <0.05) and by 17.9 +/- 4.1% at fatigue (P < 0.01), whereas Ca2+ uptake rate fell from rest by 23.8 +/- 12.2% at fatigue (P=0.05). However, the decline in muscle 3-O-MFPase activity, Ca2+ uptake, and Ca2+ release were variable and not significantly correlated with time to fatigue. Thus prolonged exhaustive exercise impaired each of the maximal in vitro Na+-K+-ATPase activity, Ca2+ release, and Ca2+ uptake rates. This suggests that acutely downregulated muscle Na+, K+, and Ca2+ transport processes may be important factors in fatigue during prolonged exercise in humans.  相似文献   

8.
Two spectroscopic techniques, circular dichroism and steady-state fluorescence, were employed in order to study conformational changes of the purified, detergent-solubilized (Ca2+-Mg2+)-ATPase of porcine erythrocyte ghost membranes. Circular dichroism (CD) spectra in the peptide region were obtained from the purified (Ca2+-Mg2+)-ATPase of porcine erythrocyte ghost membranes with the aim to investigate the secondary structure of the enzyme in the presence of calmodulin (CaM) or phosphatidylserine (PS), as well as in the E1 and E2 states. The E1 conformation was stabilized by 10 microM free Ca2+, while the E2 conformation was stabilized by 0.1 mM ethylene glycol bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). It was found that the E1 and E2 states of the enzyme strikingly differed in their secondary structure (66% and 46% of calculated alpha-helix content, respectively). In the presence of Ca2+, PS decreased the helical content of the ATPase to 61%, while CaM to 55%. Quenching of intrinsic fluorescence of (Ca2+-Mg2+)-ATPase by acrylamide, performed in the presence of Ca2+, gave evidence for a single class of tryptophan residues with Stern-Volmer constant (KSV) of 10 M-1. Accessibility of tryptophan residues varied depending on the conformational status of the enzyme. Addition of PS and CaM decreased the KSV value to 7.6 M-1 and 8.5 M-1, respectively. In the absence of Ca2+, KSV was 7.0 M-1. KI and CsCl were less effective as quenchers. The fluorescence energy transfer between (Ca2+-Mg2+)-ATPase tryptophan residues and dansyl derivative of covalently labeled CaM occurred in the presence of EGTA, but was further promoted by Ca2+. It is concluded that the interaction of CaM and PS with (Ca2+-Mg2+)-ATPase results in different conformational states of the enzyme. CD and fluorescence spectroscopy allowed to distinguish these states from the E1 and E2 conformational forms of the ATPase.  相似文献   

9.
The numbers of tryptophane residues in spinach CF1-ATPase were measured by means of chemical modification with N-bromosuccinimide (NBS) and photooxidation. There are 3.5 tryptophane residues in CF1-ATPase, among which two are essential for the enzyme activity. Photooxidation of CF1-ATPase led to increased O2 uptake of the reaction system and loss in activity of CF1-ATPase . Immunological property of CF1-ATPase has been altered by chemical modification with NBS and photooxidation. The resuits show that tryptophane residues seen to be essential for activity and antigenic properties of CF1-ATPase.  相似文献   

10.
Fluorescence energy transfer has been used to study the interaction of various phospholipids with the erythrocyte (Ca2+ + Mg2+)-ATPase. The fluorescence energy transfer between tryptophan residues of the (Ca2+ + Mg2+)-ATPase purified from erythrocytes and pyrene-labelled analogues of phosphatidylcholine (Pyr-PC), phosphatidylinositol (Pyr-PI), phosphatidylinositol 4-phosphate (Pyr-PIP), phosphatidylinositol 4,5-bisphosphate (Pyr-PIP2), phosphatidylglycerol (Pyr-PG) and phosphatidic acid (Pyr-PA) was measured. A positive correlation was found between the number of negative charges on the phospholipids (PIP2 greater than PIP greater than PA greater than PI = PG greater than PC) and the potency of their pyrene-labelled analogues to act as quantum acceptors in fluorescence energy transfer from the tryptophan residues of the (Ca2+ + Mg2+)-ATPase. This is the first time that a physical interaction between PIP/PIP2 and an intrinsic membrane protein has been demonstrated. The dependence of the energy transfer on the number of negative charges of the phospholipids closely resembles the previously demonstrated charge dependence of the enzymatic activity of the (Ca2+ + Mg2+)-ATPase (Missiaen, L., Raeymaekers, L., Wuytack, F., Vrolix, M., Desmet, H. and Casteels, R. (1989) Biochem. J. 263, 687-694). It is concluded that the stimulation of the (Ca2+ + Mg2+)-ATPase activity by negatively charged phospholipids is based on a binding of these lipids to the (Ca2+ + Mg2+)-ATPase and that the negative charges are a major modulatory factor for this interaction.  相似文献   

11.
Sarcoplasmic reticulum vesicles were noncovalently labeled at micromolar concentrations with the polycationic fluorescent reagent 4',6-diamidino-2-phenylindole (DAPI), and changes in the fluorescence intensity of the membrane-bound dye associated with functions of the Ca2+ pump and Ca2+ release were investigated. It was found that 1) DAPI fluorescence changed in the [Ca2+] range in which high affinity Ca2+ binding to the Ca2+-ATPase takes place. The time course of the Ca2+-induced changes of DAPI fluorescence was essentially the mirror image of that of tryptophan fluorescence. 2) The fluorescence intensity of bound DAPI decreased upon increase of the intravesicular [Ca2+] by either ATP-dependent Ca2+ accumulation or incubation with millimolar Ca2+ in the presence of a calcium ionophore. 3) Upon induction of Ca2+ release by adding caffeine after the completion of Ca2+ uptake, DAPI fluorescence showed transient changes. Two classes of binding sites of the sarcoplasmic reticulum membrane for DAPI were clearly distinguishable: a high affinity site (Ka = 3.0 X 10(5) M-1) with a capacity of about 1 mol/mol of Ca2+-ATPase (8.0 nmol/mg of protein) and low affinity sites with about 20-fold lower affinity and 10-fold larger capacity. The partially purified Ca2+-ATPase showed similar characteristics of high affinity DAPI binding, suggesting that DAPI bound to its high affinity site on the Ca2+-ATPase monitors the enzyme conformational changes coupled with the events described above. The high affinity binding of DAPI to the enzyme led to an increase of the initial rate of Ca2+ uptake and the inhibition of Ca2+ release induced by caffeine or ionic replacement. These results suggest that the Ca2+-ATPase is involved in some steps of the Ca2+ release mechanism.  相似文献   

12.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

13.
The effects of the antianginal drugs nitroglycerin, nicorandil, diltiazem, verapamil and nicardipine on the activity of calcium-stimulated magnesium-dependent ATPase (Ca2+-ATPase) were investigated in the microsomal fraction from porcine coronary artery smooth muscle cells. Two discrete Ca2+-dependent ATPase components were observed: [1] a high affinity component, which was a specific Ca2+-ATPase, [with a half saturation constant for Ca2+ (Km) of 0.44 microM, and maximum velocity (Vmax) of 124.3 pmol of phosphate (Pi) released/micrograms of protein/30 min]: [2] a low affinity component in which Ca2+ could be replaced by Mg2+ without loss of its activity. Nitroglycerin and nicorandil (1 microM and 10 microM) both stimulated the activity of the Ca2+-ATPase significantly [142 +/- 12 (mean +/- standard error), and 137 +/- 10% of the control with nitroglycerin, and 152 +/- 17 and 135 +/- 20% with nicorandil] at a Ca2+ concentration of 0.3 microM. Diltiazem, verapamil and nicardipine did not cause significant stimulation. Nitroglycerin and nicorandil (1 microM), significantly decreased the Km for Ca2+ from the control value of 0.44 +/- 0.06 microM to 0.26 +/- 0.03 and 0.22 +/- 0.03 microM, respectively. Nitroglycerin and nicorandil may dilate coronary arteries by stimulating this Ca2+ extrusion pump enzyme through reduction of intracellular Ca2+ in smooth muscle cells.  相似文献   

14.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 microM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 microM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z greater than Ca4Z greater than Ca2Z greater than or equal to CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10(-7)-10(-6) M Ca2+, even at a calmodulin concentration of 5 microM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 microM, corresponding to 50-80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/h membrane protein. We therefore conclude that most of the calmodulin is dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10(-7)-10(-8) M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10(-6)-10(-5) M.  相似文献   

15.
The delipidated sarcoplasmic reticulum (SR) Ca(2+)-ATPase was reconstituted into proteoliposomes containing different phospholipids. The result demonstrated the necessity of phosphatidylcholine (PC) for optimal ATPase activity and phosphatidylethanolamine (PE) for the optimal calcium transport activity. Fluorescence intensity of Fluorescein 5-isothiocyanate (FITC)-labeled enzyme at Lys515 as well as the measurement of the distance between 5-((2-[(iodoacetyl) amino] ethyl) amino)naphthalene-1-sulphonic acid (IAEDANS) label sites (Cys674/670) and Pr3+ demonstrated a conformational change of cytoplasmic domain, consequently, leading to the variation of the enzyme function with the proteoliposomes composition. Both the intrinsic fluorescence of Trp and its dynamic quenching by HB decreased with increasing PE content, revealing the conformational change of transmembrane domain. Time-resolved fluorescence study characterized three classes of Trp residues, which showed distinctive variation with the change in phospholipid composition. The phospholipid headgroup size caused the conformational change of SR Ca(2+)-ATPase, subsequent the ATPase activity and Ca2+ uptake.  相似文献   

16.
The purified (Ca2+-Mg2+)-ATPase from rat liver plasma membranes (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215) was incorporated into soybean phospholipid vesicles, together with its activator. In the presence of millimolar concentrations of Mg2+, the reconstituted proteoliposomes displayed a rapid, saturable, ATP-dependent Ca2+ uptake. Half-maximal Ca2+ uptake activity was observed at 13 +/- 3 nM free Ca2+, and the apparent Km for ATP was 16 +/- 6 microM. Ca2+ accumulated into proteoliposomes (2.8 +/- 0.2 nmol of Ca2+/mg of protein/90 s) was totally released upon addition of the Ca2+ ionophore A-23187. Ca2+ uptake into vesicles reconstituted with enzyme alone was stimulated 2-2.5-fold by the (Ca2+-Mg2+)-ATPase activator, added exogenously. The (Ca2+-Mg2+)-ATPase activity of the reconstituted vesicles, measured using the same assay conditions as for ATP-dependent Ca2+ uptake activity (e.g. in the presence of millimolar concentrations of Mg2+), was maximally activated by 20 nM free Ca2+, half-maximal activation occurring at 13 nM free Ca2+. The stoichiometry of Ca2+ transport versus ATP hydrolysis approximated 0.3. These results provide a direct demonstration that the high affinity (Ca2+-Mg2+)-ATPase identified in liver plasma membranes is responsible for Ca2+ transport.  相似文献   

17.
We have studied the effect of Ruthenium red on the sarcoplasmic reticulum Ca(2+)-ATPase. Ruthenium red does not modify the Ca2+ pumping activity of the enzyme, despite its interaction with cationic binding sites on sarcoplasmic reticulum vesicles. Two pools of binding sites were distinguished. One pool (10 nmol/mg) is dependent upon the presence of micromolar Ca2+ and may therefore represent the high-affinity Ca2+ transport sites of the Ca(2+)-ATPase. However, Ruthenium red only slightly competes with Ca2+ on these sites. The other pool (15-17 nmol/mg) is characterized as low-affinity cation binding sites of sarcoplasmic reticulum, distinct from the Mg2+ site involved in the ATP binding to the Ca(2+)-ATPase. The interaction of Ruthenium red with these low-affinity cation binding sites, which may be located either on the Ca(2+)-ATPase or on surrounding lipids, decreases tryptophan fluorescence level of the protein. As much as 25% of the tryptophan fluorescence of the Ca(2+)-ATPase is quenched by Ruthenium red (with a dissociation constant of 100 nM), tryptophan residues located near the bilayer being preferentially affected.  相似文献   

18.
The Ca2+, Mg2(+)-ATPase of the myometrium sarcolemma purified by the method of affinity chromatography on calmodulin sepharose is reconstituted into azolectin liposomes in the functionally active form by means of cholate dialysis. The ATPase-dependent accumulation of 45Ca is shown on the obtained model system. It makes up 95% of the total accumulation and may decrease to 43% under the effect of 0.8 microM A23187. Ca2+, Mg2(+)-ATPase reconstituted into azolectin liposomes is in the high affinity to Ca2+; Km for Ca2+ is equal to 0.88 +/- 0.22 microM, calmodulin practically does not change it. The highest activity of the reconstituted enzyme is observed at pH 7.0, temperature 50 degrees C, the Mg-ATP concentration 1-2 mM. The Km for substrate is 0.45 +/- 0.02 mM.  相似文献   

19.
The properties of sarcoplasmic reticulum Ca2+-ATPase have been studied after modification of the ATP high affinity binding site with fluorescein isothiocyanate, both in the membranous state and after solubilization with the nonionic detergent, octaethyleneglycol monododecyl ether. Total inactivation of both membrane-bound and solubilized Ca2+-ATPase requires covalent attachment of 1 mol of fluorescein/mol of enzyme (115,000 g of protein) or per binding site for ATP. Sedimentation velocity studies of soluble enzyme showed that both unlabeled and fluorescein-labeled Ca2+-ATPase were present in a predominantly monomeric form. The phosphorylation level of unlabeled Ca2+-ATPase was unchanged by solubilization. Dephosphorylation measurements at 0 degree C indicated that the phosphorylation is an intermediate in the ATPase reaction catalyzed by solubilized Ca2+-ATPase. Fluorescein labeling of half of the Ca2+-ATPase in the membrane did not influence the enzyme kinetics of the remaining unmodified Ca2+-ATPase. Measurements of both fluorescein and tryptophan fluorescence indicated that the soluble monomer of Ca2+-ATPase like the membrane-bound enzyme exists in a Ca2+-dependent equilibrium between two principal conformations (E and E). E (absence of Ca2+) is unstable in the soluble form, but the pCa dependence of the E - E equilibrium is identical with that of the membranous Ca2+-ATPase (pCa0.5 = 6.7 and Hill coefficient 2). These results suggest that the Ca2+-ATPase polypeptides function with a high degree of independence in the membrane.  相似文献   

20.
Purified Escherichia coli agmatinase (EC 3.5.3.11) expressed the same activity in the absence or presence of added Mn2+ (0-5mM). However, it was strongly inhibited by Co2+, Ni2+, and Zn2+ and almost half inactivated by EDTA. Partial inactivation by EDTA yielded enzyme species containing 0.85 +/- 0.1 Mn2+/subunit, and it was accompanied by a decrease in intensity of fluorescence emission and a red shift from the emission maximum of 340 nm to 346 nm, indicating the movement of tryptophane residues to a more polar environment. The activity and fluorescence properties of fully activated agmatinase were restored by incubation of dialysed species with Mn2+. Manganese-free species, obtained by treatment with EDTA and guanidinium chloride (3 M), were active only in the presence of added Mn2+. Results obtained, which represent the first demonstration of the essentiality of Mn2+ for agmatinase activity, are discussed in connection with a possible binuclear metal center in the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号