首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Biochemical activities of the ParA partition protein of the P1 plasmid   总被引:17,自引:0,他引:17  
The unit-copy P1 plasmid depends for stability on a plasmid-encoded partition region called par, consisting of the parA and parB genes and the parS site. ParA is absolutely required for partition, but its partition-critical role is not known. Purified ParA protein is shown to possess an ATPase activity in vitro which is specifically stimulated by purified ParB protein and by DNA. ParA is responsible for regulation of expression of parA and parB, and purified ParA has an ATP-dependent, site-specific DNA binding activity which recognizes a sequence that overlaps the parA promoter. The role of the ATP-dependence of the binding activity, as well as other possible functions of the ATPase activity in partition, is discussed.  相似文献   

3.
The P1 ParA protein is an ATPase that recognizes the parA promoter region where it acts to autoregulate the P1 parA–parB operon. The ParB protein is essential for plasmid partition and recognizes the cis -acting partition site parS . The regulatory role of ParA is also essential because a controlled level of ParB protein is critical for partition. However, we show that this regulatory activity is not the only role for ParA in partition. Efficient partition can be achieved without autoregulation as long as Par protein levels are kept within a range of low values. The properties of ParA mutants in these conditions showed that ParA is essential for some critical step in the partition process that is independent of par operon regulation. The putative nucleotide-binding site for the ParA ATPase was identified and disrupted by mutation. The resulting mutant was substantially defective for autoregulation and completely inactive for partition in a system in which the need for autoregulation is abolished. Thus, the ParA nucleotide-binding site appears to be necessary both for the repressor activity of ParA and for some essential step in the partition process itself. We propose that the nucleotide-bound form of the enzyme adopts a configuration that favours binding to the operator, but that the ATPase activity of ParA is required for some energetic step in partition of the plasmid copies to daughter cells.  相似文献   

4.
The partition system of the P1 plasmid, P1 par consists of the ParA and ParB proteins and a cis -acting site, parS . It is responsible for the orderly segregation of plasmid copies to daughter cells. Plasmids with null mutations in parA or parB replicate normally, but missegregate. ParB binds specifically to the parS site, but the role of ParA and its ATPase activity in partition is unclear. We describe a novel class of parA mutants that cannot be established or maintained as plasmids unless complemented by the wild-type gene. One, parAM314I , is conditional: it can be maintained in cells in minimal medium but cannot be established in cells growing in L broth. The lack of plasmid propagation in L broth-grown cells was shown to be caused by a ParB-dependent activity of the mutant ParA protein that blocks plasmid propagation by an interaction at the parS site. Thus, ParA acts to modify the ParB– parS complex, probably by binding to it. Partition is thought to involve selection of pairs of plasmids before segregation, either by physical pairing of copies or by binding of copies to paired host sites. We suggest that ParA is involved in this reaction and that the mutant ParA protein forms paired complexes that cannot unpair.  相似文献   

5.
6.
Plasmid-partition functions of the P7 prophage   总被引:12,自引:0,他引:12  
  相似文献   

7.
The parA and parB genes of Pseudomonas aeruginosa are located approximately 8 kb anticlockwise from oriC. ParA is a cytosolic protein present at a level of around 600 molecules per cell in exponential phase, but the level drops about fivefold in stationary phase. Overproduction of full-length ParA or the N-terminal 85 amino acids severely inhibits growth of P. aeruginosa and P. putida. Both inactivation of parA and overexpression of parA in trans in P. aeruginosa also lead to accumulation of anucleate cells and changes in motility. Inactivation of parA also increases the turnover rate (degradation) of ParB. This may provide a mechanism for controlling the level of ParB in response to the growth rate and expression of the parAB operon.  相似文献   

8.
Dam B 《Plasmid》2011,65(2):185-191
pBTK445 is a newly described large (~60Kb), low-copy number, conjugative plasmid indigenous to the sulfur-chemolithoautotroph Advenella kashmirensis. Based on its minimal replication region, a shuttle vector, pBTKS was constructed which can be used for diverse Alcaligenaceae members. The construct was found to be stably maintained both in the native host as well as in Escherichia coli in the absence of selective pressure which indicated that pBTKS harbors the stabilizing system of pBTK445, that are commonly coded by low-copy-number plasmids. Deletion analyzes of pBTKS confirmed the essentiality of parA (encoding a Walker-type ATPase of 214 amino acids) and the downstream located small parB (encoding an 85 amino acid protein having no sequence homolog in the database) in the faithful partitioning of pBTK445. A 1075bp PCR product, containing parA, parB and an upstream sequence having nine 11bp direct repeats (parS site) was found to comprise the partition functions of pBTK445, stabilizing both low-copy or high-copy number homologous and heterologous replicons in diverse hosts. The incompatibility determinant and the par promoter, P(par) were both found to be present within a 191bp iterated sequence present upstream of parA. ParB was found to regulate the expression of the Par proteins from P(par). The presence of a typical Walker-type ATPase motif in ParA, a short phylogenetically unrelated ParB, that acts as a repressor of P(par), and location of the iterated parS site upstream of parA, confirm that the active partition system of pBTK445 belongs to the type Ib.  相似文献   

9.
The partition system of the unit-copy plasmid P1 consists of two proteins, the parA and parB gene products, and a cis-acting site, parS. Production of high levels of the P1 ParB protein, from an external promoter on a high-copy-number vector, inhibits the propagation of lambda-mini-P1 prophages and destabilizes other P1-derived plasmids. The interference by ParB protein depends on the parS site, or centromere, of the P1 partition region; plasmids lacking parS are unaffected. The defect is more severe than the defect due to mutations that simply eliminate par function. In the presence of excess ParB protein, plasmids carrying parS are more unstable than would be predicted from a random distribution at cell division. The destabilization is a segregation defect, as the copy number of parS-bearing plasmids is not decreased under these conditions. Thus, it appears that ParB protein binds to parS; if too much protein is present, it sequesters such plasmids so they cannot be properly, or even randomly, partitioned. This suggests that under normal conditions, ParB protein recognizes and binds to parS and may be the protein responsible for pairing plasmids during the process of partitioning at cell division.  相似文献   

10.
A pair of genes designated parA and parB are encoded by many low copy number plasmids and bacterial chromosomes. They work with one or more cis-acting sites termed centromere-like sequences to ensure better than random predivisional partitioning of the DNA molecule that encodes them. The centromere-like sequences nucleate binding of ParB and titrate sufficient protein to create foci, which are easily visible by immuno-fluorescence microscopy. These foci normally follow the plasmid or the chromosomal replication oriC complexes. ParA is a membrane-associated ATPase that is essential for this symmetric movement of the ParB foci. In Bacillus subtilis ParA oscillates from end to end of the cell as does MinD of E. coli, a relative of the ParA family. ParA may facilitate ParB movement along the inner surface of the cytoplasmic membrane to encounter and become tethered to the next replication zone. The ATP-bound form of ParA appears to adopt the conformation needed to drive partition. Hydrolysis to create ParA-ADP or free ParA appears to favour a form that is not located at the pole and binds to DNA rather than the partition complex. Definition of the protein domains needed for interaction with membranes and the conformational changes that occur on interaction with ATP/ADP will provide insights into the partitioning mechanism and possible targets for inhibitors of partitioning.  相似文献   

11.
The partition operon of P1 plasmid encodes two proteins, ParA and ParB, required for the faithful segregation of plasmid copies to daughter cells. The operon is followed by a centromere analog, parS, at which ParB binds. ParA, a weak ATPase, represses the par promoter most effectively in its ADP-bound form. ParB can recruit ParA to parS, stimulate its ATPase, and significantly stimulate the repression. We report here that parS also participates in the regulation of expression of the par genes. A single chromosomal parS was shown to augment repression of several copies of the par promoter by severalfold. The repression increase was sensitive to the levels of ParA and ParB and to their ratio. The increase may be attributable to a conformational change in ParA mediated by the parS-ParB complex, possibly acting catalytically. We also observed an in cis effect of parS which enhanced expression of parB, presumably due to a selective modulation of the mRNA level. Although ParB had been earlier found to spread into and silence genes flanking parS, silencing of the par operon by ParB spreading was not significant. Based upon analogies between partitioning and septum placement, we speculate that the regulatory switch controlled by the parS-ParB complex might be essential for partitioning itself.  相似文献   

12.
Structure and function of the F plasmid genes essential for partitioning   总被引:37,自引:0,他引:37  
The F plasmid in Escherichia coli has its own partition mechanism controlled by the sopA and sopB genes, and by the cis-acting sopC region. The DNA sequence of the entire partition region and its flanking regions is described here. Two large open reading frames coding for 43,700 Mr and 35,400 Mr proteins correspond to sopA and sopB, respectively. The sopB reading frame is located immediately downstream from the sopA reading frame. Twelve 43 base-pair direct repeats exist in the sopC region without any spacer regions, and one pair of seven base-pair inverted repeats exists in each of the direct repeats. Analysis of deletions in the sopC region showed that the direct repeats play an important role in plasmid partition and IncD incompatibility. IncG incompatibility is exhibited by pBR322 derivatives carrying the sopB gene alone. When compared with the partition genes parA and parB of plasmid P1, homology in amino acid sequence was found between the SopA protein of F and the ParA protein of P1, and also between SopB protein of F and ParB protein of P1. In addition, homology was found between Rep proteins of F and P1.  相似文献   

13.
The segregational stability of bacterial, low-copy-number plasmids is promoted primarily by active partition. The plasmid-specified components of the prototypical P1 plasmid partition system consist of two proteins, ParA (44.3 kDa) and ParB (38.5 kDa), which, in conjunction with integration host factor, form a nucleoprotein complex at the plasmid partition site, parS. This complex is the probable substrate for the directed temporal and spatial intracellular movement of plasmids before cell division. The genetic organization of the partition cassette of the multidrug resistance plasmid TP228 differs markedly from that of the P1 paradigm. The TP228 system includes a novel member (ParF; 22.0 kDa) of the ParA superfamily of ATPases, of which the P1 ParA protein is the archetype. However, the ParF protein and its immediate relatives form a discrete subgroup of the ParA superfamily, which evolutionarily is more related to the MinD subgroup of cell division proteins than to ParA of P1. The TP228 and P1 partition modules differ further in that the former does not include a parB homologue, but does specify a protein (ParG; 8.6 kDa) unrelated to ParB. Homologues of the parF gene are widely disseminated on eubacterial genomes, suggesting that ParF-mediated partition may be a common mechanism by which plasmid segregational stability is achieved.  相似文献   

14.
Yin P  Li TY  Xie MH  Jiang L  Zhang Y 《Journal of bacteriology》2006,188(23):8103-8108
Our current understanding of segregation of prokaryotic plasmids has been derived mainly from the study of the gram-negative bacterial plasmids. We previously reported a replicon of the cryptic plasmid from a gram-positive bacterium, Leifsonia xyli subsp. cynodontis. The replicon contains a putative plasmid partition cassette including a Walker-type ATPase followed by open reading frame 4 without sequence homologue. Here we reported that the orf4 gene was essential for maintaining the plasmid stability in L. xyli subsp. cynodontis. Furthermore, the purified orf4 protein specifically and cooperatively bound to direct repeat sequences located upstream of the parA gene in vitro, indicating that orf4 is a parB gene and that the direct repeat DNA sequences constitute a partition site, parS. The location of parS and the features of ParA and ParB proteins suggest that this plasmid partition cassette belongs to type Ib, representing the first type Ib cassette identified from a gram-positive bacterial plasmid.  相似文献   

15.
The complete sequence of the virulence plasmid pMT1 of Yersinia pestis KIM5 revealed a region homologous to the plasmid partition (par) region of the P7 plasmid prophage of Escherichia coli. The essential genes parA and parB and the downstream partition site gene, parS, are highly conserved in sequence and organization. The pMT1parS site and the parA-parB operon were separately inserted into vectors that could be maintained in E. coli. A mini-P1 vector containing pMT1parS was stably maintained when the pMT1 ParA and ParB proteins were supplied in trans, showing that the pMT1par system is fully functional for plasmid partition in E. coli. The pMT1par system exerted a plasmid silencing activity similar to, but weaker than those of P7par and P1par. In spite of the high degree of similarity, especially to P7par, it showed unique specificities with respect to the interactions of key components. Neither the P7 nor P1 Par proteins could support partition via the pMT1parS site, and the pMT1 Par proteins failed to support partition with P1parS or P7parS. Typical of other partition sites, supernumerary copies of pMT1parS exerted incompatibility toward plasmids supported by pMT1par. However, no interspecies incompatibility effect was observed between pMT1par, P7par, and P1par.  相似文献   

16.
The P1 plasmid partition system is responsible for segregation of daughter plasmids during division of the Escherichia coli host cell. The P1-encoded elements consist of two essential proteins, ParA and ParB, and the cis-acting incB region. The incB region determines partition-mediated incompatibility and contains the centromere-like site parS. We have isolated and purified the two proteins. ParB binds specifically to the incB region in vitro. DNase I footprinting assays place a strong binding site over the 35-bp parS sequence previously shown to be sufficient for partition when the Par proteins are supplied in trans. A weaker site lies within the incB region in sequences that are important for specifying incompatibility, but are not essential for partition. Gel band retardation assays show that a host factor binds specifically to the incB sequence. The factor strongly stimulates binding of ParB. Cutting the region at a site between the two ParB binding sites yields two fragments that can bind ParB but not host factor. Thus, information for host-factor binding lies in the region determining the specificity of plasmid incompatibility. The roles of parB and the host factor in partition and the specificity of plasmid incompatibility are discussed.  相似文献   

17.
Bouet JY  Funnell BE 《The EMBO journal》1999,18(5):1415-1424
The partition system of P1 plasmids is composed of two proteins, ParA and ParB, and a cis-acting site parS. parS is wrapped around ParB and Escherichia coli IHF protein in a higher order nucleoprotein complex called the partition complex. ParA is an ATPase that autoregulates the expression of the par operon and has an essential but unknown function in the partition process. In this study we demonstrate a direct interaction between ParA and the P1 partition complex. The interaction was strictly dependent on ParB and ATP. The consequence of this interaction depended on the ParB concentration. At high ParB levels, ParA was recruited to the partition complex via a ParA-ParB interaction, but at low ParB levels, ParA removed or disassembled ParB from the partition complex. ADP could not support these interactions, but could promote the site-specific DNA binding activity of ParA to parOP, the operator of the par operon. Conversely, ATP could not support a stable interaction of ParA with parOP in this assay. Our data suggest that ParA-ADP is the repressor of the par operon, and ParA-ATP, by interacting with the partition complex, plays a direct role in partition. Therefore, one role of adenine nucleotide binding and hydrolysis by ParA is that of a molecular switch controlling entry into two separate pathways in which ParA plays different roles.  相似文献   

18.
19.
In Caulobacter crescentus the partitioning proteins ParA and ParB operate a molecular switch that couples chromosome partitioning to cytokinesis. Homologues of these proteins have been shown to be important for the stable inheritance of F-plasmids and the prophage form of bacteriophage P1. In C. crescentus, ParB binds to sequences adjacent to the origin of replication and is required for the initiation of cell division. Additionally, ParB influences the nucleotide-bound state of ParA by acting as a nucleotide exchange factor. Here we have performed a genetic analysis of the chromosome partitioning protein ParB. We show that C. crescentus ParB, like its plasmid homologues, is composed of three domains: a carboxyl-terminal dimerization domain; a central DNA-binding, helix-turn-helix domain; and an amino-terminal domain required for the interaction with ParA. In vivo expression of amino-terminally deleted parB alleles has a dominant lethal effect resulting in the inhibition of cell division. Fluorescent in situ hybridization experiments indicate that this phenotype is not caused by a chromosome partitioning defect, but by the reversal of the amounts of ATP- versus ADP- bound ParA inside the cell. We present evidence suggesting that amino-terminally truncated and full-length, wild-type ParB form heterodimers which fail to interact with ParA, thereby reversing the intracellular ParA-ATP to ParA-ADP ratio. We hypothesize that the amino-terminus of ParB is required to regulate the nucleotide exchange of ParA which, in turn, regulates the initiation of cell division.  相似文献   

20.
N15 is a bacteriophage of Escherichia coli that resembles lambda, but, unlike lambda, it lysogenizes as a linear plasmid. We show that stable maintenance of this unusual plasmid-prophage depends on the parA and parB genes, relatives of the partition genes of F and P1 plasmids. ParB of N15, like its F- and P1-encoded homologues, destabilizes plasmids carrying its target centromere, when present in excess. Within the genome of N15, we identified four unlinked, palindromic sequences that can promote the ParB-mediated destabilization of a moderate-copy vector in cis. They are distant from the parAB operon, unlike the centromeric sites of F and P1. Each of these palindromes could interact in vivo and in vitro with ParB. Each, when cloned separately, had properties characteristic of centromeric sites: exerted incompatibility against the N15 prophage and mini-N15 plasmids, and stabilized a mini-P1 plasmid depleted of its own partition genes when ParA and ParB of N15 were supplied. A pair of sites was more effective than a single site. Two of the centromeric sites are located in the proximity of promoters of phage genes, suggesting that, in addition to their function in partitioning of N15 prophage, they may control expression of N15 lytic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号