首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 22 sheep with lymphatic cannulas were used to determine if 99mTc-labeled diethylenetriaminepentaacetic acid (DTPA) clears directly from the air spaces of the lungs into the lymph vessels. Each sheep was anesthetized and ventilated with an aerosol of the DTPA for 2-5 min, and the DTPA activities in the lymph and plasma were measured every 15 min for 2 h. After the first 45 min, the average ratio of the DTPA in the lymph to that in the plasma (L/P) was 1.03 +/- 0.06 (SD) in the six control experiments and 1.11 +/- 0.05 in the six experiments in which the lungs were inflated with a positive end-expired pressure of 10 cmH2O throughout the study. Direct movement of the DTPA from the air spaces into the lymph was not necessary to account for the DTPA clearance in these experiments because the L/P ratio was not significantly different from 1.0. Eight additional sheep received intravenous infusions of air at 0.2 ml.kg-1.min-1 for 2 h to induce lung injury before depositing the DTPA. In these sheep L/P was 1.53 +/- 0.28, which was significantly higher than the value measured in the control group (P less than 0.01). We considered the possibility that the increased L/P ratio in these sheep could be due to alterations in the distribution of the blood flow to the tissue, but the L/P ratio in four sheep whose distribution of blood flow was altered by inflation of a balloon in the right pulmonary artery was 1.05 +/- 0.10, the same as the control value.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pulmonary microvascular and alveolar epithelial permeability were evaluated in vivo by scintigraphic imaging during lung distension. A zone of alveolar flooding was made by instilling a solution containing 99mTc-albumin in a bronchus. Alveolar epithelial permeability was estimated from the rate at which this tracer left the lungs. Microvascular permeability was simultaneously estimated measuring the accumulation of (111)In-transferrin in lungs. Four levels of lung distension (corresponding to 15, 20, 25, and 30 cmH2O end-inspiratory airway pressure) were studied during mechanical ventilation. Computed tomography scans showed that the zone of alveolar flooding underwent the same distension as the contralateral lung during inflation with gas. Increasing lung tissue stretch by ventilation at high airway pressure immediately increased microvascular, but also alveolar epithelial, permeability to proteins. The same end-inspiratory pressure threshold (between 20 and 25 cmH2O) was observed for epithelial and endothelial permeability changes, which corresponded to a tidal volume between 13.7 +/- 4.69 and 22.2 +/- 2.12 ml/kg body wt. Whereas protein flux from plasma to alveolar space ((111)In-transferrin lung-to-heart ratio slope) was constant over 120 min, the rate at which 99mTc-albumin left air spaces decreased with time. This pattern can be explained by changes in alveolar permeability with time or by a compartment model including an intermediate interstitial space.  相似文献   

3.
We compared the ability of three aerosolized tracers to discriminate among control, lung inflation with a positive end expired pressure of 10 cmH2O, lung vascular hypertension and edema without lung injury, and lung edema with lung injury due to intravenous oleic acid. The tracers were 99mTc-diethylenetriaminepentaacetate (99mTc-DTPA, mol wt 492), 99mTc-human serum albumin (99mTc-ALB, mol wt 69,000), and 99mTc-aggregated albumin (99mTc-AGG ALB, mol wt 383,000). 99mTc-DTPA clearance measurements were not able to discriminate lung injury from lung inflation. The 99mTc-AGG ALB clearance rate was unchanged by lung inflation and increased slightly with lung injury. The 99mTc-ALB clearance rate (0.06 +/- 0.02%/min) was unchanged by lung inflation (0.09 +/- 0.02%/min, P greater than 0.05) or 4 h of hypertension without injury (0.09 +/- 0.04%/min, P greater than 0.05). Deposition of 99mTc-ALB within 15 min of the administration of the oleic acid increased the clearance rate to 0.19 +/- 0.06%/min, which correlated well with the postmortem lung water volume (r = 0.92, P less than 0.01). This did not occur when there was a 60-min delay in the deposition of 99mTc-ALB. We conclude that 99mTc-ALB is the best indicator for studying the effects of lung epithelial injury on protein and fluid transport into and out of the air spaces of the lungs in a minimally invasive manner.  相似文献   

4.
To investigate the acute physiological and structural changes after lung irradiation, the effects of whole-lung irradiation were investigated in fourteen sheep. Ten sheep were prepared with vascular and chronic lung lymph catheters, then a week later were given 1,500 rad whole-lung radiation and monitored for 2 days. Four sheep were given the same dose of radiation and were killed 4 h later for structural studies. Lung lymph flow increased at 3 h after radiation (14.6 +/- 2.1 ml/h) to twice the base-line flow rate (7.5 +/- 1.3), with a high lymph-to-plasma protein concentration. Pulmonary arterial pressure increased twofold from base line (18 +/- 1.6 cmH2O) at 2 h after radiation (33 +/- 3.8). Cardiac output and systemic pressure in the aorta did not change after lung radiation. Arterial O2 tension decreased from 85 +/- 3 to 59 +/- 4 Torr at 1 day after radiation. Lymphocyte counts in both blood and lung lymph decreased to a nadir by 4 h and remained low. Thromboxane B2 concentration in lung lymph increased from base line (0.07 +/- 0.03 ng/ml) to peak at 3 h after radiation (8.2 +/- 3.7 ng/ml). The structural studies showed numerous damaged lymphocytes in the peripheral lung and bronchial associated lymphoid tissue. Quantitative analysis of the number of granulocytes in peripheral lung showed no significant change (base line 6.2 +/- 0.8 granulocytes/100 alveoli, 4 h = 10.3 +/- 2.3). The most striking change involved lung airways. The epithelial lining of the majority of airways from intrapulmonary bronchus to respiratory bronchiolus revealed damage with the appearance of intracellular and intercellular cell fragments and granules. This new large animal model of acute radiation lung injury can be used to monitor physiological, biochemical, and morphological changes after lung radiation. It is relevant to the investigation of diffuse oxidant lung injury as well as to radiobiology per se.  相似文献   

5.
The effects of increased hydrostatic pressure on the concentrations of hyaluronan (hyaluronic acid) in lung lymph and serum were investigated in awake sheep with a cannula in the efferent vessel from the caudal mediastinal lymph node. Lung lymph was sampled at base line [left atrial pressure (LAP) 6.5 +/- 1.7 mmHg] and after two increases of LAP to 25.7 +/- 2.2 mmHg (level 1) and 37.0 +/- 5.1 mmHg (level 2). The lung lymph flow increased from 1.9 +/- 0.5 at base line to 9.3 +/- 2.2 and 15.9 +/- 0.7 ml/30 min, and the lymph-to-plasma concentration ratio of total protein decreased from 0.63 +/- 0.02 to 0.32 +/- 0.04 and 0.32 +/- 0.05 at the two elevated levels of LAP, respectively. The hyaluronan concentration in lung lymph was unchanged, and there was a flow-dependent elimination of hyaluronan from the lung that increased from 23 +/- 8 to 87 +/- 19 and 137 +/- 37 micrograms/30 min, respectively. The lung concentration of hyaluronan was 167 +/- 28 micrograms/g fresh lung, and at base line it was calculated that slightly less than 2% of the lung hyaluronan was eliminated by the lymphatic route in 24 h. If extrapolated to 24 h, the elimination rate of hyaluronan seen during elevated LAP would result in lymphatic elimination of 18% of the lung hyaluronan over this time period. Since hyaluronan is responsible for part of the protein exclusion in the extracellular matrix, it is plausible that washout of interstitial hyaluronan contributes to the decrease in albumin exclusion from the interstitium that occurs after an elevation of LAP.  相似文献   

6.
We quantified cerebrospinal fluid (CSF) transport (conductance) and CSF outflow resistance in late-gestation fetal and adult sheep using two methods, a constant pressure infusion method and a bolus injection technique into the lateral ventricles. No significant differences in CSF conductance (fetus 0.013 +/- 0.002, adult 0.014 +/- 0.003 ml x min(-1) x cm H(2)O(-1)) or CSF outflow resistance (fetus 83.7 +/- 9.8, adult 84.7 +/- 19.7 cm H(2)O x ml(-1) x min) were observed. To confirm CSF transport to plasma in fetal animals, (125)I- or (131)I-labeled human serum albumin (HSA) was injected into the lateral ventricles. The tracer entered fetal plasma with an average mass transport rate of 1.91 +/- 0.47% injected/h (n = 9). In two fetuses, we monitored the tracer appearance in plasma and cervical and thoracic duct lymph after injection of radioactive HSA into the ventricular CSF. As was the case in adult animals, fetal tracer concentrations increased in all three compartments over time, with the highest concentrations measured in lymph collected from the cervical lymphatics. These results 1) indicate that global CSF transport parameters in the late-gestation fetus and adult sheep are similar and 2) suggest an important role for extracranial lymphatic vessels in CSF transport before birth.  相似文献   

7.
We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.  相似文献   

8.
9.
We compared the pulmonary transvascular fluxes of transferrin and albumin in the intact sheep lung. Anesthetized sheep were prepared with lung lymph fistulas. The vascular blood pool was marked with 99mTc-erythrocytes, autologous transferrin was labeled with 113mIn, and albumin was labeled with 125I. Samples of blood, plasma, lymph, and lung were obtained up to 180 min after tracer infusion. Lymph tissue radioactivities were corrected for the intravascular component and expressed as extravascular-to-plasma concentration ratios. Clearance of transferrin and albumin from the plasma space followed a two-compartment model. The clearance rate constant was 2.1 +/- 0.1 x 10(-3) min for albumin and 2.4 +/- 0.1 x 10(-3) min for transferrin (P less than 0.05). Lymph-to-plasma ratios for albumin and transferrin were not different. However, the extravascular-to-plasma ratio for albumin was greater than transferrin (P less than 0.05). The lymph and lung data were deconvoluted for the plasma input function and fit to a two-compartment model. The results indicate that albumin and transferrin have similar permeabilities across the vascular barrier but have different pulmonary circulation to lymph kinetics because the extravascular volume of distribution of albumin is greater than transferrin.  相似文献   

10.
To determine whether uremia changes lung vascular permeability, we measured the flow of lymph and proteins from the lungs of acutely uremic sheep. Acute renal failure was induced by either bilateral nephrectomy or by reinfusing urine. Both models of renal failure increased the plasma creatinine from 0.8 +/- 0.3 to 11 +/- 1 mg/dl in 3 days but caused no significant change in the flow of lymph from the lungs. To determine whether uremia increased the protein clearance response to elevated pulmonary microvascular pressures, we inflated a balloon in the left atrium for 2 h before and 3 days after inducing acute renal failure. In seven sheep, before removing the kidneys, the 20 cmH2O elevation of left atrial pressure increased the protein clearance 3.9 +/- 3.0 ml/h (from 9.5 +/- 4.9 to 13.4 +/- 5.4 ml/h). Three days after the bilateral nephrectomy the same increase in left atrial pressure increased the protein clearance 6.4 +/- 3.6 ml/h (from 6.1 +/- 2.1 to 12.5 +/- 5.2 ml/h), which was a significantly larger increase than that measured before the nephrectomy (P less than 0.05). Sham nephrectomy in seven sheep caused the protein clearance response to the elevated left atrial pressure to fall from 4.7 +/- 1.9 ml/h before the sham nephrectomy to 2.6 +/- 1.4 ml/h 3 days later (P less than 0.05). Uremia due to reinfusion of urine in five sheep did not affect the protein clearance response to elevations in left atrial pressure. Neither model of acute uremia increased the postmortem extravascular lung water volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We tested the effects of OKY-046, a thromboxane synthase inhibitor, on lung injury induced by 2 h of pulmonary air infusion (1.23 ml/min) in the pulmonary artery of unanesthetized sheep with chronic lung lymph fistula so as to assess the role of thromboxane A2 (TxA2) in the lung injury. We measured pulmonary hemodynamic parameters and the lung fluid balance. The concentrations of thromboxane B2 (TxB2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) in plasma and lung lymph were determined by radioimmunoassay. Air infusion caused sustained pulmonary hypertension and an increase in pulmonary vascular permeability. The levels of TxB2 and 6-keto-PGF1 alpha in both plasma and lung lymph were significantly elevated during the air infusion. TxB2 concentration in plasma obtained from the left atrium was higher than that from the pulmonary artery at 15 min of air infusion. When sheep were pretreated with OKY-046 (10 mg/kg iv) prior to the air infusion, increases in TxB2 were prevented. The pulmonary arterial pressure, however, increased similarly to that of untreated sheep (1.8 X base line). The increase in lung lymph flow was significantly suppressed during the air infusion. Our data suggest that the pulmonary hypertension observed during air embolism is not caused by TxA2.  相似文献   

12.
The effect of lung lymph fistula preparation on pulmonary microvascular permeability was investigated in sheep. Acutely prepared animals (n = 9) were compared with animals with a chronic lung lymph fistula (n = 5). The osmotic reflection coefficients (sigma) for total protein, albumin, immunoglobins (Ig) G and M, and the equivalent pore dimensions were calculated. Data were achieved at maximal possible lymph flows (QL) following elevation of left atrial pressure. In sheep with a chronic lung lymph fistula sigma's for total protein, albumin, IgG, and IgM at maximal lymph flows were 0.76 +/- 0.01, 0.65 +/- 0.09, 0.79 +/- 0.03, and 0.91 +/- 0.01, respectively. In the acutely prepared group the minimum lymph-to-plasma protein concentration for total protein was 0.39 +/- 0.06, corresponding to a sigma of 0.61 +/- 0.01. The sigma for albumin, IgG, and IgM were 0.48 +/- 0.04, 0.64 +/- 0.02, and 0.87 +/- 0.01, respectively. The equivalent pore radii in the chronic group were determined to be 54 and 190 A with 29% of the filtration accounted for by large pores. In the acute group the small pores were 56 A and the large pores 175 A with 53% of total volume flow at maximum lymph flows occurring through the large pores. Assuming a constant small-pore population the large pore number increased 4.5 times after surgery. For total protein, IgG, and IgM, sigma's in the acutely prepared group were significantly lower than in the control group. These results thus indicate that surgical preparation of a lung lymph fistula in sheep may cause acute increases in pulmonary microvascular permeability.  相似文献   

13.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

14.
We studied the rate, the routes, and the mechanisms for protein clearance from the air spaces and lungs of 20 unanesthetized sheep over 144 h. We instilled 100 ml of autologous serum labeled with 125I-albumin into one lung. At the end of 24, 48, 96, or 144 h, the lungs were removed and the residual native protein and 125I-albumin in the air spaces were determined by bronchoalveolar lavage. Also the fraction of the instilled 125I-albumin remaining in the rest of the lung was measured in the lung homogenate. Clearance of the 125I-albumin from the lung into the plasma, lymph, thyroid, urine, and feces was also determined. The removal of both the 125I-albumin and the native protein from the air spaces was slow, following a monoexponential decline. The removal rate of the 125I-albumin from the air spaces was slightly but significantly faster (1.6%/h) than the clearance rate of the native protein (0.9%/h). Clearance of the 125I-albumin from the lung also followed a slow monoexponential decline at a rate of 1.4%/h. At all time periods, 75% of the 125I-albumin remaining in the lung was located in the air spaces, thus indicating that the pulmonary epithelium is the principal barrier to protein clearance from the normal lung. Macrophages appeared to play a minor role in alveolar protein clearance because the quantity of 125I-albumin present in the phagocytic cells in the air spaces was less than 1% of the instilled 125I-albumin at all time periods. However, macrophages may play some role in protein clearance after 48 h because we visualized phagolysosomes in macrophages, and there was an increase in free iodine in lung lavage, urine, thyroid, and feces after 48 h. However, gel electrophoretic studies showed that most of the 125I-albumin was cleared from the lung as an intact molecule, although only 24.7 +/- 4.7% of the 125I-albumin was cleared by the lymphatics.  相似文献   

15.
The role played by the mechanical tissue stress in supporting lymph formation and propulsion in thoracic tissues was studied in deeply anesthetized rats (n = 13) during spontaneous breathing or mechanical ventilation. After arterial and venous catheterization and insertion of an intratracheal cannula, fluorescent dextrans were injected intrapleurally to serve as lymphatic markers. After 2 h, the fluorescent intercostal lymphatics were identified, and the hydraulic pressure in lymphatic vessels (P lymph) and adjacent interstitial space (P int) was measured using micropuncture. During spontaneous breathing, end-expiratory P lymph and corresponding P int were -2.5 +/- 1.1 (SE) and 3.1 +/- 0.7 mmHg (P < 0.01), which dropped to -21.1 +/- 1.3 and -12.2 +/- 1.3 mmHg, respectively, at end inspiration. During mechanical ventilation with air at zero end-expiratory alveolar pressure, P lymph and P int were essentially unchanged at end expiration, but, at variance with spontaneous breathing, they increased at end inspiration to 28.1 +/- 7.9 and 28.2 +/- 6.3 mmHg, respectively. The hydraulic transmural pressure gradient (DeltaP tm = P lymph - P int) was in favor of lymph formation throughout the whole respiratory cycle (DeltaP tm = -6.8 +/- 1.2 mmHg) during spontaneous breathing but not during mechanical ventilation (DeltaP tm = -1.1 +/- 1.8 mmHg). Therefore, data suggest that local tissue stress associated with the active contraction of respiratory muscles is required to support an efficient lymphatic drainage from the thoracic tissues.  相似文献   

16.
Removal of pleural liquid and protein by lymphatics in awake sheep   总被引:1,自引:0,他引:1  
The contribution of the parietal pleural lymphatics to pleural liquid and protein removal is unclear. We asked two questions. What is the rate of removal of sterile, artificial hydrothoraxes in awake sheep? What percentage is removed through parietal pleural lymphatics? Three days after the placement of a rib capsule in 18 sheep, we instilled a 10 ml/kg 1.0 g/dl autologous protein solution with labeled albumin and erythrocytes through the capsule into the pleural space. Erythrocytes were used as a marker for lymphatic flow. We measured terminal pleural liquid volume and radioactivity at periods from 2 to 48 h. In three sheep, we obtained a third volume measurement at 6 h by the volume of dilution technique. We found that hydrothorax removal could be described by a linear function with a constant rate: 0.28 +/- 0.01 ml.kg-1.h-1 (mean +/- SE) for the grouped data, and 0.20, 0.28, and 0.31 ml.kg-1.h-1 for the individual sheep. At 24 h, erythrocyte clearance was 89 +/- 16% (mean +/- SD) that of liquid and albumin clearance. We conclude that in awake sheep with large hydrothoraxes, pleural liquid and protein are removed at a rate of 0.28 +/- 0.01 ml.kg-1.h-1 (mean +/- SE) and lymphatics are responsible for at least 89% of this removal.  相似文献   

17.
Our purpose was to determine whether lipid peroxidation of lung tissue, a reflection of O2 radical injury, occurs with endotoxin, and whether the degree of tissue change corresponds with the degree of increased protein permeability. Unanesthetized adult sheep with lung lymph fistulas were given Escherichia coli endotoxin at a dose of 2 micrograms/kg (n = 34). Tissue lipid peroxidation was measured using the thiobarbituric acid assay for malondialdehyde (MDA). The MDA content of lung tissue in nanomoles per gram increased from a control value of 48 +/- 8 to 98 +/- 18 at 5 h postendotoxin (2 micrograms/kg), whereas lung lymph protein transport (Cp), was increased 3- to 4-fold. The MDA content returned to base line with Cp by 24 h postendotoxin. Six sheep given endotoxin were pretreated with 12.5 mg/kg of ibuprofen, and six were infused with dimethylthiourea (DMTU) 0.75 g/kg. With ibuprofen, Cp was only increased 2.5- to 3-fold and MDA was increased to 69 +/- 15 nmol/g. With DMTU, the increase in Cp was comparable to that with endotoxin alone, as was the MDA of lung tissue with a value of 92 +/- 12 nmol/g. The correlation of tissue MDA with Cp in all animals was 0.83. We conclude that lipid peroxidation occurs in lung tissue after a moderately severe endotoxin injury with the degree of change corresponding to the degree of increased Cp.  相似文献   

18.
Effects of hypobaria on lung fluid balance were studied in five awake sheep with chronic lung lymph fistulas using a decompression chamber. Each sheep was exposed to three conditions of 6,600-m-simulated high altitude in random order as follows: 1) 6,600-m-simulated hypoxic hypobaria (barometric pressure 326 Torr, 21% inspired O2 fraction), 2) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction), and 3) 6,600-m-simulated normoxic hypobaria (barometric pressure 326 Torr, 65% inspired O2 fraction) after pretreatment with a 2-h pure O2 inhalation (i.e., denitrogenation) to allow elimination of dissolved gases, especially N2, from the blood and tissues. We observed that under both hypoxic hypobaria and normoxic hypobaria, lung lymph flow (Qlym) significantly increased from the base-line values of 6.4 +/- 0.3 to 13.0 +/- 1.0 ml/h and 6.0 +/- 0.2 to 9.4 +/- 0.3 ml/h, respectively (P less than 0.05) and that the lymph-to-plasma protein concentration ratio remained unchanged. Moreover, pretreatment with a 2-h denitrogenation inhibited the increase in Qlym. These results suggest that rapid exposure to hypobaria causes an increase in pulmonary vascular permeability and that intravascular air bubble formation may account for this permeability change.  相似文献   

19.
To assess the role of intracellular adenosine 3',5'-cyclic monophosphate (cAMP), we tested the effects of dibutyryl cAMP (DBcAMP), an analogue of cAMP, on lung injury induced by pulmonary air embolism in awake sheep with chronic lung lymph fistula. We infused air (1.23 ml/min) in the pulmonary artery for 2 h in untreated control sheep. In DBcAMP-pretreated sheep DBcAMP was infused (1 mg/kg bolus and 0.02 mg.kg-1.min-1 constantly for 5 h); after 1 h from beginning of DBcAMP administration the air infusion was started. After the air infusion, pulmonary arterial pressure (Ppa) and lung lymph flow rate (Qlym) significantly increased in both groups. DBcAMP-pretreated sheep showed significantly lower responses in Qlym (2.7 X base line) compared with untreated control sheep (4.6 X base line); however, Ppa, left atrial pressure, and lung lymph-to-plasma protein concentration ratio were not significantly different between the two groups. Although plasma and lung lymph thromboxane B2 and 6-ketoprostaglandin F1 alpha concentrations increased significantly during the air infusion, DBcAMP-pretreated sheep showed significantly lower responses. Thus DBcAMP infusion attenuated pulmonary microvascular permeability induced by air embolism. We conclude that pulmonary vascular permeability is in part controlled by the intracellular cAMP level.  相似文献   

20.
Infusion of Escherichia coli endotoxin (0.12-1.5 micrograms/kg) into unanesthetized sheep causes transient pulmonary hypertension and several hours of increased lung vascular permeability, after which sheep recover. To produce enough lung injury to result in pulmonary edema with respiratory failure, we infused larger doses of E. coli endotoxin (2.0-5.0 micrograms/kg) into 11 chronically instrumented unanesthetized sheep and continuously measured pulmonary arterial, left atrial and aortic pressures, dynamic lung compliance, lung resistance, and lung lymph flow. We intermittently measured arterial blood gas tensions and pH, made interval chest radiographs, and calculated postmortem extravascular bloodless lung water-to-dry lung weight ratio (EVLW/DLW). Of 11 sheep 8 developed respiratory failure; 7 died spontaneously 6.3 +/- 1.1 h, and one was killed 10 h after endotoxin infusion. All sheep that had a premortem room air alveolar-arterial gradient in partial pressure of O2 (PAo2-Pao2) greater than 42 Torr (58 +/- 5 (SE) Torr) died. Of eight sheep that had radiographs made, six developed radiographically evident interstitial or interstitial and alveolar edema. Pulmonary artery pressure rose from base line 22 +/- 2 to 73 +/- 3 cmH2O and remained elevated above baseline levels until death. There was an initial fourfold decrease in dynamic compliance and sixfold increase in pulmonary resistance; both variables remained abnormal until death. EVLW/DLW increased with increasing survival time after endotoxin infusion, suggesting that pulmonary edema accumulated at the same rate in all fatally injured sheep, regardless of other variables. The best predictor of death was a high PAo2-Pao2. The marked increase in pulmonary resistance and decrease in dynamic compliance occurred too early after endotoxin infusion (15-30 min) to be due to pulmonary edema. The response to high-dose endotoxin in sheep closely resembles acute respiratory failure in humans following gram-negative septicemia. Respiratory failure and death in this model were not due to pulmonary edema alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号