首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diversity of nitrogen-fixing bacteria and the nitrogen-fixation activity was investigated in Tuber magnatum, the most well-known prized species of Italian white truffle. Degenerate PCR primers were applied to amplify the nitrogenase gene nifH from T. magnatum ascomata at different stages of maturation. Putative amino acid sequences revealed mainly the presence of Alphaproteobacteria belonging to Bradyrhizobium spp. and expression of nifH genes from Bradyrhizobia was detected. The nitrogenase activity evaluated by acetylene reduction assay was 0.5-7.5μmolC(2)H(4)h(-1)g(-1), comparable with early nodules of legumes associated with specific nitrogen-fixing bacteria. This is the first demonstration of nitrogenase expression gene and activity within truffle.  相似文献   

2.
3.
Application of plant growth regulators (PGRs) to soybean plants is known to induce changes in nitrogenase activity in root nodules, and this led us to hypothesize that PGRs would affect nitrogenase activity in free-living rhizobia cultures. Little is known about the molecular basis of the effects of PGRs on nitrogenase activity in free-living rhizobia cultures. Therefore, a comparative study was conducted on the effects of gibberellins (GA3) and mepiquat chloride (PIX), which regulate plant growth, on the nitrogenase activity of the nitrogen-fixing bacterium Bradyrhizobium japonicum. Fix and nif gene regulation and protein expression in free-living cultures of B. japonicum were investigated using real-time PCR and two-dimensional electrophoresis after treatment with GA3 or PIX. GA3 treatment decreased nitrogenase activity and the relative expression of nifA, nifH, and fixA genes, but these effects were reversed by PIX treatment. As expected, several proteins involved in nitrogenase synthesis were down-regulated in the GA3-treated group. Conversely, several proteins involved in nitrogenase synthesis were up-regulated in the PIX-treated group, including bifunctional ornithine acetyltransferase/N-acetylglutamate synthase, transaldolase, ubiquinol-cytochrome C reductase iron-sulfur subunit, electron transfer flavoprotein subunit beta, and acyl-CoA dehydrogenase. Two-pot experiments were conducted to evaluate the effects of GA3 and PIX on nodulation and nitrogenase activity in Rhizobium-treated legumes. Interestingly, GA3 treatment increased nodulation and depressed nitrogenase activity, but PIX treatment decreased nodulation and enhanced nitrogenase activity. Our data show that the nif and fix genes, as well as several proteins involved in nitrogenase synthesis, are up-regulated by PIX and down-regulated by GA3, respectively, in B. japonicum.  相似文献   

4.
Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concentrations.Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.  相似文献   

5.
Five Rhizobium meliloti isolates known to have different capabilities for expression of nitrogenase activity under symbiotic conditions were used to inoculate four representative Medicago sativa cultivars under aseptic conditions. Nitrogenase activities and respiratory activity were measured for whole plants and excised nodules. Dry weights and nodule numbers were also recorded after 4 weeks of growth in plastic pouches on a nitrogen-free nutrient medium. Hydrogen evolution and acetylene reduction rates were used to calculate the fraction of reducing power allocated to dinitrogen reduction. Although the efficiency of the system defined in this way was poorly correlated with plant yield, a very high linear correlation was obtained between yield and the algebraic product of nitrogenase activity and efficiency. High correlation (r > 0.78) was obtained between respiration and nitrogenase activity for whole plants as well as for excised nodules. Nodular respiration accounted for between 10 and 20% of the total plant dark respiration. The four test cultivars exhibited significantly different symbiotic responses to the inocula, although trends in potential for expression of the nitrogenase system by the five R. meliloti strains were evident. There was significant interaction between the host plant and symbiont in determining nitrogenase activity and yield. This screening method allows quantitative discrimination between effective and ineffective host-inoculum combinations.  相似文献   

6.
With the genomes of three Frankia strains available, high-throughput proteomics methods can be used to reveal the set of proteins expressed by these bacteria in symbiosis with plants. A question we address is the degree to which the known genomes can be used to study proteomes of uncharacterized frankiae growing in field-collected root nodules. To this end, we have characterized the symbiotic proteomes of Frankia from three plant species, Alnus incana subsp. rugosa, Ceanothus americanus, and Elaeagnus angustifolia. Root nodule proteins were identified using two-dimensional liquid chromatography coupled to tandem mass spectrometry (LC MS/MS) of trypsin-digested protein samples. We identified 1300 Frankia proteins in A. incana nodules using the Frankia alni ACN14a genome and 1100 proteins from E. angustifolia nodules using the EAN1pec genome. In addition, over 100 proteins were identified from C. americanus nodules using a more limited one dimensional LC MS/MS analysis. Many of the most abundant proteins identified are involved in energy and nitrogen metabolism. The enzyme nitrogenase and the nitrogenase iron protein were among the most abundant proteins, reflecting the major process occurring in symbiosis. Several hundred plant proteins were also identified. We highlight the power of proteomics to uncover the physiology of symbiotic Frankia in the environment using heterologous genome information.  相似文献   

7.
Davis LC 《Plant physiology》1984,76(4):854-857
I have measured acetylene diffusion through plant tissues including nodules from several species of legume—vetch, peas, soybeans, and Sesbania rostrata. The observed half-time for reequilibration of internal and external concentration is less than 1 minute for typical nodules. Inward diffusion of acetylene in air is rapid relative to the use of acetylene by nitrogenase so that diffusion of acetylene would not be a significant limiting factor for nitrogenase activity in air. However, under an atmosphere of Ar:O2 where there is no N2 reduction, the inward diffusion rate of acetylene into larger nodules could produce a measurable limitation of observed nitrogenase activity at low acetylene concentrations.  相似文献   

8.
Factor analysis has been conducted for the data on the interaction between the genes of the root nodule bacteria (rhizobia), which influence the efficiency of symbiosis with leguminous plants, including dctA (encoding succinate permease), dctBD (activating the dctA gene due to binding its enhancer in the presence of succinate), rpoN (activating the promoters of dctA and nitrogenase genes nifHDK), and nifA (activating the nitrogenase genes due to binding their enhancers). The analysis of the alfalfa rhizobia (Sinorhizobium meliloti) recombinants that contain additional copies of these genes suggested the antagonistic (epistatic) interaction between nifA and rpoN. It may be associated either with the competition for C compounds imported into the nodules between the energy production and nitrogen assimilation processes or with the competition for redox potentials between the oxidative phosphorylation and nitrogen fixation processes. Since the phenotypic effects of the studied genes depend on the activity of nitrogen export into the aerial parts of plants, we suppose that its accumulation in bacteroids impairs the activation of the nifHDK genes by the NifA protein due to its interaction with the GlnB protein (the nitrogen metabolism regulator) or with the FixLJ and ActSR proteins (the redox potential regulators).  相似文献   

9.
The effect of infection by Meloidogyne javanica and Heterodera trifolii on number, size, structure and efficiency of nodules formed by Rhizobiurn trifolii on white clover roots was investigated. Introduction of nematodes one week before, simultaneously, or one week following inoculation with Rhizobium bacteria did not hinder nodule formation. Nodule size did not differ between nematode-infected and nematode-free plants. Formation of nodules on M. javanica galls and gall formation on the nodules have been reported. The structure of nodular tissues was not disturbed by nematode infection, even though giant cells were formed inside the vascular bundles. The nitrogen-fixation efficiency of nematode-infected nodules was not impaired; however, earlier disintegration of nodules as a result of M. javanica infection ultimately deprived the plants of nitrogenous materials. The drastic reduction of the total-N in H. trifolii-infected plants reflected stunting of the entire plant due to nematode infection. Both nematodes invaded the entire root system, uniformly showing preference for nodules.  相似文献   

10.
Different strains and species of the soil phytopathogen Agrobacterium possess the ability to transfer and integrate a segment of DNA (T-DNA) into the genome of their eukaryotic hosts, which is mainly mediated by a set of virulence (vir) genes located on the bacterial Ti-plasmid that also contains the T-DNA. To date, Agrobacterium is considered to be unique in its capacity to mediate genetic transformation of eukaryotes. However, close homologs of the vir genes are encoded by the p42a plasmid of Rhizobium etli; this microorganism is related to Agrobacterium, but known only as a symbiotic bacterium that forms nitrogen-fixing nodules in several species of beans. Here, we show that R. etli can mediate functional DNA transfer and stable genetic transformation of plant cells, when provided with a plasmid containing a T-DNA segment. Thus, R. etli represents another bacterial species, besides Agrobacterium, that encodes a protein machinery for DNA transfer to eukaryotic cells and their subsequent genetic modification.  相似文献   

11.
Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation   总被引:1,自引:0,他引:1  
The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant.  相似文献   

12.
Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family.  相似文献   

13.
14.
15.
Nitrogenase activity in root nodules of four species of actinorhizal plants showed varying declines in response to exposure to acetylene (10% v/v). Gymnostoma papuanum (S. Moore) L. Johnson. and Casuarina equisetifolia L. nodules showed a small decline (5-15%) with little or no recovery over 15 minutes. Myrica gale L. nodules showed a sharp decline followed by a rapid return to peak activity. Alnus incana ssp. rugosa (Du Roi) Clausen. nodules usually showed varying degrees of decline followed by a slower return to peak or near-peak activity. We call these effects acetylene-induced transients. Rapid increases in oxygen tension also caused dramatic transient decreases in nitrogenase activity in all species. The magnitude of the transient decrease was related to the size of the O2 partial pressure (pO2) rise, to the proximity of the starting and ending oxygen tensions to the pO2 optimum, and to the time for which the plant was exposed to the lower pO2. Oxygen-induced transients, induced both by step jumps in pO2 and by O2 pulses, were also observed in cultures of Frankia. The effects seen in nodules are purely a response by the bacterium and not a nodule effect per se. Oxygen-induced nitrogenase transients in actinorhizal nodules from the plant genera tested here do not appear to be a result of changes in nodule diffusion resistance.  相似文献   

16.
The expression of cosmid-borne Bradyrhizobium japonicum hydrogenase genes in alfalfa, clover, and soybean nodules harboring Rhizobium transconjugants was studied. Cosmid pHU52 conferred hydrogen uptake (Hup) activity in both free-living bacteria and in nodules on the different plant hosts, although in nodules the instability of the cosmid resulted in low levels of Hup activity. In contrast, cosmid pHU1, which does not confer Hup activity on free-living bacteria, gave a Hup+ phenotype in nodules on alfalfa and soybean. Nodules formed by B. japonicum USDA 123Spc(pHU1) recycled about 90% of nitrogenase-mediated hydrogen evolution. Both subunits of hydrogenase (30- and 60-kilodalton polypeptides) were detected in enzyme-linked immunosorbent assays of bacteroid preparations from nodules harboring B. japonicum strains with pHU1 or pHU52. Neither pHU53 nor pLAFR1 conferred detectable Hup activity in either nodules or free-living bacteria. Based on the physical maps of pHU1 and pHU52, it is suggested that a 5.5-kilobase EcoRI fragment unique to pHU52 contains a gene or part of a gene required for Hup activity in free-living bacteria but not in nodules. This conclusion is supported by the observation that two Tn5 insertions in the chromosome of B. japonicum USDA 122DES obtained by marker exchange with Tn5-mutagenized pHU1 abolished Hup activity in free-living bacteria but not in nodules.  相似文献   

17.
To investigate the short-term (30–240 min) interactions among nitrogenase activity, NH4+ assimilation, and plant glycolysis, we measured the concentrations of selected C and N metabolites in alfalfa (Medicago sativa L.) root nodules after detopping and during continuous exposure of the nodulated roots to Ar:O2 (80:20, v/v). Both treatments caused an increase in the ratios of glucose-6-phosphate to fructose-1,6-bisphosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, phosphoenolpyruvate (PEP) to pyruvate, and PEP to malate. This suggested that glycolytic flux was inhibited at the steps catalyzed by phosphofructokinase, pyruvate kinase, and PEP carboxylase. In the Ar:O2-treated plants the apparent inhibition of glycolytic flux was reversible, whereas in the detopped plants it was not. In both groups of plants the apparent inhibition of glycolytic flux was delayed relative to the decline in nitrogenase activity. The decline in nitrogenase activity was followed by a dramatic increase in the nodular glutamate to glutamine ratio. In the detopped plants this was coincident with the apparent inhibition of glycolytic flux, whereas in the Ar:O2-treated plants it preceded the apparent inhibition of glycolytic flux. We propose that the increase in the nodular glutamate to glutamine ratio, which occurs as a result of the decline in nitrogenase activity, may act as a signal to decrease plant glycolytic flux in legume root nodules.  相似文献   

18.
19.
Several purine auxotrophs were isolated inRhizobium meliloti and characterized for their nutritional requirements. They were found to produce small, irregular nodules lacking any detectable nitrogenase activity onMedicago sativa. The symbiotic aberration manifests itself only in the late developmental stage, for, (i) these purine auxotrophs infect theMedicago sativa root hairs by forming normal infection threads, and (ii) the mutants are recovered from the root nodules induced by them. External supplementation of the plant growth substrate with purines or their biosynthetic intermediates fails to restore symbiosis. This, and the failure of complementation of these auxotrophs with the known symbiotic genes, demonstrates that these mutants perhaps define a new set of genes influencing the symbiotic process inRhizobium meliloti.  相似文献   

20.
The sequence of events leading up to the establishment of symbiotic nitrogen-fixation were studied in two tropical legumes, Centrosema pubescens Benth, and Vigna unguiculata L. Walp. Parameters measured included fresh and dry weights, chlorophyll and leghaemoglobin contents, as well as the activities of NADH-nitrate reductase (EC 1.6.6.1), and nitrogenase (nitric-oxide reductase-EC 1.7.99.2) in plants that were inoculated with suitable rhizobia or which were watered with potassium nitrate. Dry weight and photosynthetic activity of both species followed the sigmoidal pattern which is characteristic of most plants. Growth was little different in either a qualitative or quantitative sense whether nitrogen was supplied as nitrate or through dinitrogen fixation. Although the biochemical sequence of events was dependent on the limiting sensitivities of the individual assays used, the data suggest that nitrate reductase is the first measurable enzymatic activity in the nodules (and roots), followed by acetylene reduction and leghaemoglobin in that order. It is possible therefore, that low levels of symbiotic nitrogen fixation occur in the nodules in the absence of leghaemoglobin. Nitrate reductase activity in C. pubescens nodules was negatively exponentially correlated with nitrogenase activity of the same nodules, suggesting a changing metabolism in old nodules. These data are discussed in terms of environmental and physical factors known to control nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号