首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A gene homologous tomoaA, the gene responsible for the expression of a protein involved in an early step in the synthesis of the molybdopterin cofactor ofEscherichia coli, was found to be located 2.7-kb upstream of the nicotine dehydrogenase (ndh) operon on the catabolic plasmid pAO1 ofArthrobacter nicotinovorans. The MoaA protein, containing 354 amino acids, migrated on an SDS-polyacrylamide gel with an apparent molecular weight of 40,000, in good agreement with the predicted molecular weight of 38,880. The pAO1-encodedmoaA gene fromA. nicotinovorans was expressed inE. coli as an active protein that functionally complementedmoaA mutants. Its reduced amino acid sequence shows 43% identity to theE. coli MoaA, 44% to the NarAB gene product fromBacillus subtilis, and 42% to the gene product of two contiguous ORFs fromMethanobacterium formicicum. N-terminal sequences, including the motif CxxxCxYC, are conserved among the MoaA and NarAB proteins. This motif is also present in proteins involved in PQQ cofactor synthesis in almost all the NifB proteins reported so far and in thefixZ gene product fromRhizobium leguminosarum. Mutagenesis of any of these three conserved cysteine residues to serine abolished the biological activity of MoaA, while substitution of the tyrosine by either serine, phenylalanine, or alanine did not alter the capacity of the protein to complement themoaA mutation inE. coli. A second Cys-rich domain with the motif FCxxC(13x)C is found close to the C-terminus of MoaA and NarAB proteins. These two Cys-rich sequences may be involved in the coordination of a metal ions. The pAO1 copy ofmoaA may not be unique in theA. nicotinovorans genome since the molybdopterin cofactor oxidation products were detected in cell extracts from a plasmidless strain.  相似文献   

2.
We announce a 4.63-Mb genome assembly of an isolated bacterium that is the first sequenced nicotine-degrading Arthrobacter strain. Nicotine catabolism genes of the nicotine-degrading plasmid pAO1 were predicted, but plasmid function genes were not found. These results will help to better illustrate the molecular mechanism of nicotine degradation by Arthrobacter.  相似文献   

3.
Marius Mihăşan 《Biologia》2010,65(5):760-768
Based on similarity searches, two putative pathways were previously described as being encoded by the pAO1 megaplasmid of Arthrobacter nicotinovorans: an almost fully established nicotine-degrading pathway and a yet unknown putative sugar-catabolic pathway. The general organization of the open reading frames (ORFs) of the latter indicated possible gene products as targets for docking experiments, aimed at identifying possible sugar substrates of this pathway. Homology modelling and docking results with the deduced proteins of three ORFs of the putative sugar catabolic pathway indicated D-tagatose-1,6-bisphosphate as a common ligand and thus as substrate of the pathway.  相似文献   

4.
Available molecular and genetic tools for the genetic manipulation of Arthrobacter species are limited until now. In gene engineering, a continuous set of promoters with various strengths are of importance for fine-tuning gene expression in metabolic optimization and control analysis. Here, for the first time, we constructed a promoter trap system using green fluorescence protein (GFP) as a reporter, for screening and characterizing functional Arthrobacter promoters. Twenty-three Arthrobacter transformants of various GFP fluorescence strengths were isolated and characterized through the analysis of DNA sequences. Among the 23 putative promoters, 2 were selected for deletion analysis of promoter elements. As a result, the deletion of the upstream of the putative promoter P8 and P13 caused a 43.8% decrease and a 29.1% increase in the fluorescence signals, respectively. Finally, we obtained the strongest promoter P13-3 which was 4.4 times more potent than the promoter of 6–hydroxyl–d–nicotine oxidase gene which was previously reported in Arthrobacter nicotinovorans, and the obtained promoter was used to improve the production of cyclic adenosine monophosphate in Arthrobacter sp. CGMCC 3584. The screening strategy together with obtained promoters in this study would contribute to the future engineering of Arthrobacter species.  相似文献   

5.
MALDI mass spectra were generated for the type strain of Arthrobacter crystallopoietes VKM Ac-1107T and for closely related (99.6?C100% 16S rRNA gene similarity) halotolerant Arthrobacter strains, as well as for some other Arthrobacter species. Results of the cluster analysis of the spectra were in agreement with the genotypic characteristics of bacteria (DNA-DNA hybridization and BOX-PCR). The data obtained in this study indicate that the halotolerant strains belong to two new Arthrobacter species. Specific peaks which can serve as chemotaxonomic markers of the species composing the phylogenetic group ??Arthrobacter crystallopoietes?? were revealed.  相似文献   

6.
7.
The genes of nicotine dehydrogenase (NDH) were identified, cloned and sequenced from the catabolic plasmid pA01 of Arthrobacter nicotinovorans. In immediate proximity to this gene cluster is the beginning of the 6-hydroxy-L-niotine oxidase (6-HLNO) gene. NDH is composed of three subunits (A, B and C) of Mr 30011, 14924 and 87677. It belongs to a family of bacterial hydroxylases with a similar subunit structure; they have molybdopterin dinucleotide, FAD and Fe-S clusters as cofactors. Here the first complete primary structure of a bacterial hydroxylase is provided. Sequence alignments of each of the NDH subunits show similarities to the sequences of eukaryotic xanthine dehydrogenase (XDH) but not to other known molybdenum-containing bacterial enzymes. Based on alignment with XDH it is inferred that the smallest subunit (NDHB) carries an iron-sulphur cluster, that the middle-sized subunit (NDHA) binds FAD, and that the largest NDH subunit (NDHC) corresponds to the molybdopterin-binding domain of XDH. Expression of both the ndh and the 6-hlno genes required the presence of nicotine and molybdenum in the culture medium. Tungsten inhibited enzyme activity but not the synthesis of the enzyme protein. The enzyme was found in A. nicotinovorans cells in a soluble form and in a membrane-associated form. In the presence of tungsten the fraction of membrane-associated NDH increased.  相似文献   

8.
Several bacterial species are capable of using nicotine, the main alkaloid in tobacco plants, as a substrate for growth. The dominant species include members of two genera, Pseudomonas and Arthrobacter. The degradation pathway and genetic structure of nicotine catabolism in Arthrobacter nicotinovorans were recently reviewed (Brandsch Appl Microbiol Biotechnol 69:493–498, 2006). Here, we present up-to-date information on biodegradation of nicotine by Pseudomonas spp. Species in this genus capable of degrading nicotine are summarized and analyzed phylogenetically. Their metabolic intermediates and nicotine degradation-related genes were summarized, and the nicotine-biotransformation pathways were compared and discussed.  相似文献   

9.
10.
Two Arthrobacter nicotinovorans molybdenum enzymes hydroxylate the pyridine ring of nicotine. Molybdopterin cytosine dinucleotide (MCD) was determined to be a cofactor of these enzymes. A mobA gene responsible for the formation of MCD could be identified and its function shown to be required for assembly of the heterotrimeric molybdenum enzymes.  相似文献   

11.
The 165-kb catabolic plasmid pAO1 enables the gram-positive soil bacterium Arthrobacter nicotinovorans to grow on the tobacco alkaloid L-nicotine. The 165,137-nucleotide sequence, with an overall G+C content of 59.7%, revealed, besides genes and open reading frames (ORFs) for nicotine degradation, a complete set of ORFs for enzymes essential for the biosynthesis of the molybdenum dinucleotide cofactor, as well as ORFs related to uptake and utilization of carbohydrates, sarcosine, and amino acids. Of the 165 ORFs, approximately 50% were related to metabolic functions. pAO1 conferred to A. nicotinovorans the ability to take up L-[(14)C]nicotine from the medium, with an K(m) of 5.6 +/- 2.2 micro M. ORFs of putative nicotine transporters formed a cluster with the gene of the D-nicotine-specific 6-hydroxy-D-nicotine oxidase. ORFs related to replication, chromosome partitioning, and natural transformation functions (dprA) were identified on pAO1. Few ORFs showed similarity to known conjugation-promoting proteins, but pAO1 could be transferred by conjugation to a pAO1-negative strain at a rate of 10(-2) to 10(-3) per donor. ORFs with no known function represented approximately 35% of the pAO1 sequence. The positions of insertion sequence elements and composite transposons, corroborated by the G+C content of the pAO1 sequence, suggest a modular composition of the plasmid.  相似文献   

12.
Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC–MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.  相似文献   

13.
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thaliana S-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.  相似文献   

14.
15.
TrwC, the relaxase of plasmid R388, catalyzes a series of concerted DNA cleavage and strand transfer reactions on a specific site (nic) of its origin of transfer (oriT). nic contains the cleavage site and an adjacent inverted repeat (IR2). Mutation analysis in the nic region indicated that recognition of the IR2 proximal arm and the nucleotides located between IR2 and the cleavage site were essential for supercoiled DNA processing, as judged either by in vitro nic cleavage or by mobilization of a plasmid containing oriT. Formation of the IR2 cruciform and recognition of the distal IR2 arm and loop were not necessary for these reactions to take place. On the other hand, IR2 was not involved in TrwC single-stranded DNA processing in vitro. For single-stranded DNA nic cleavage, TrwC recognized a sequence embracing six nucleotides upstream of the cleavage site and two nucleotides downstream. This suggests that TrwC DNA binding and cleavage are two distinguishable steps in conjugative DNA processing and that different sequence elements are recognized by TrwC in each step. IR2-proximal arm recognition was crucial for the initial supercoiled DNA binding. Subsequent recognition of the adjacent single-stranded DNA binding site was required to position the cleavage site in the active center of the protein so that the nic cleavage reaction could take place.  相似文献   

16.
17.
Microbiology and biochemistry of nicotine degradation   总被引:9,自引:0,他引:9  
Several bacterial species are adapted to nicotine, the main alkaloid produced by the tobacco plant, as growth substrate. A general outline of nicotine catabolism by these bacteria is presented, followed by an emphasis on new insights based on molecular biology and biochemical work obtained with the catabolic plasmid pAO1 of Arthrobacter nicotinovorans. Its 165-kb sequence revealed the genetic structure of nicotine catabolism and allowed the assignment of new enzyme activities to specific gene products, which extends the known biochemical steps of this pathway. Potential implications of the progress in our understanding of bacterial breakdown of nicotine for biotechnological applications are discussed.  相似文献   

18.
Relaxases act as DNA selection sieves in conjugative plasmid transfer. Most plasmid relaxases belong to the HUH endonuclease family. TrwC, the relaxase of plasmid R388, is the prototype of the HUH relaxase family, which also includes TraI of plasmid F. In this article we demonstrate that TrwC processes its target nic-site by means of a highly secure double lock and key mechanism. It is controlled both by TrwC–DNA intermolecular interactions and by intramolecular DNA interactions between several nic nucleotides. The sequence specificity map of the interaction between TrwC and DNA was determined by systematic mutagenesis using degenerate oligonucleotide libraries. The specificity map reveals the minimal nic sequence requirements for R388-based conjugation. Some nic-site sequence variants were still able to form the U-turn shape at the nic-site necessary for TrwC processing, as observed by X-ray crystallography. Moreover, purified TrwC relaxase effectively cleaved ssDNA as well as dsDNA substrates containing these mutant sequences. Since TrwC is able to catalyze DNA integration in a nic-site-containing DNA molecule, characterization of nic-site functionally active sequence variants should improve the search quality of potential target sequences for relaxase-mediated integration in any target genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号