首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The following equations represent the influence of the ethanol concentration (E) on the specific growth rate of the yeast cells () and on the specific production rate of ethanol () during the reactor filling phase in fed-batch fermentation of sugar-cane blackstrap molasses: = 0 - k · E and v = v 0 · K/(K +E) Nomenclature E ethanol concentration in the aqueous phase of the fermenting medium (g.L–1) - Em value of E when = 0 or = 0 (g.L–1) - F medium feeding rate (L.h–1) - k empirical constant (L.g–1.h–1) - K empirical constant (g.L–1) - Mas mass of TRS added to the, reactor (g) - Mcs mass of consumed TRS (g) - Me mass of ethanol in the aqueous phase of the fermenting medium (g) - Ms mass of TRS in the aqueous phase of the fermenting medium (g) - Mx mass of yeast cells (dry matter) in the fermenting medium (g) - r correlation coefficient - S TRS concentration in the aqueous phase of the fermenting medium (g.L–1) - Sm TRS concentration of the feeding medium (g.L–1) - t time (h) - T temperature (° C) - TRS total reducing sugars calculated as glucose - V volume of the fermenting medium (L) - V0 volume of the inoculum (L) - X yeast cells concentration (dry matter) in the fermenting medium (g.L–1) - filling-up time (h) - specific growth rate of the yeast cells (h–1) - 0 value of when E=0 - specific production rate of ethanol (h–1) - 0 value of when E=0 - density of the yeast cells (g.L–1) - dry matter content of the yeast cells  相似文献   

2.
Summary The ethanol yield was not affected and the ethanol productivity increased (10%) when linearly decreasing feeding rates were used instead of constant feeding rates in fed-batch ethanol fermentations.Nomenclature F reactor feeding rate (L.h–1) - ME mass of ethanol in the fermentor (g) - Ms mass of TRS in the fermentor (g) - Mx mass of yeast cells (dry matter) in the fermentor (g) - P ethanol productivity (g.L–1.h–1) - s standard deviation - So TRS concentration in the feeding mash (g.L–1) - t time (h) - T fermentor filling-up time (h) - TRS total reducing sugars calculated as glucose (g.L–1) - Xo yeast cells concentration (dry matter) in the inoculum (g.L–1) - average ethanol yield (% of the theoretical value)  相似文献   

3.
Summary The ethanol yield was not affected and the ethanol productivity was increased when exponentially decreasing feeding rates were used instead of constant feeding rates in fed batch ethanol fermentations. The influences of the initial sugar feeding rate on the ethanol productivity, on the constant ethanol production rate during the feeding phase and on the initial ethanol production specific rate are represented by Monod-like equations.Nomenclature F reactor feeding rate (L.h–1) - Fo initial reactor feeding rate (L.h–1) - K time constant; see equation (l) (h–1) - ME mass of ethanol in the fermentor (g) - Ms mass of TRS in the fermentor (g) - Mx mass of yeast cells (dry matter) in the fermentor (g) - P ethanol productivity (g.L–1.h–1) - R ethanol constant production rate during the feeding phase (g.h–1) - s standard deviation - So TRS concentration in the feeding mash (g.L–1) - t time (h) - T fermentor filling-up-time (h) - T time necessary to complete the fermentation (h) - TRS total reducing sugars calculated as glucose (g.L–1) - Vo volume of the inoculum (L) - Vf final volume of medium in the fermentor (L) - Xo yeast concentration of the inoculum (dry matter) (g.L–1) - ethanol yield (% of the theoretical value) - initial specific rate of ethanol production (h–1)  相似文献   

4.
Summary Optimal growth of Methanosarcina barkeri occurred in a defined medium containing methanol when 2.5–4 mM sodium sulphide was added giving a concentration of 0.04–0.06 mM dissolved sulphide (HS+S2–. When the sulphide concentration was too low for optimal growth (e.g., 0.1 mM Na2S added) the addition of the redox resin Serdoxit acted as a sulphide reservoir and caused a significant stimulation of growth. Furthermore it could be demonstrated that iron sulphide, zinc sulphide or L-methionine could also act as sulphur sources while the addition of sodium sulphate to sulphide-depleted media failed to restore growth. The amino acid L-cysteine (0.85 mM) stimulated growth but could not replace Na2S.Under optimal cysteine-and sulphide concentrations the generation time of this strain was about 7–9 h during growth on methanol, giving a growth yield of about 0.14 g/g methanol consumed. Different M. barkeri strains were also able to grow under these conditions on acetate (30–50 h doubling time) without a significant lag-phase and with complete substrate consumption even though the inoculum was grown on methanol or H2–CO2. When methanol and acetate were present as a mixture in the medium both were used simultaneously.  相似文献   

5.
We have studied the ethanolic fermentation of D-xylose with Pachysolen tannophilus in batch cultures. We propose a model to predict variations in D-xylose consumed, and biomass and ethanol produced, in which we include parameters for the specific growth rate, for the consumption of D-xylose and production of ethanol either related or not to growth.The ideal initial pH for ethanol production turned out to be 4.5. At this pH value the net specific growth rate was 0.26 h–1, biomass yield was 0.16 g.g–1, the cell-maintenance coefficient was 0.073 g.g–1.h–1, the parameter for ethanol production non-related to growth was 0.064 g.g–1,h–1 and the maximum ethanol yield was 0.32 g.g–1.List of Symbols A c Carbon atomic weight - a d1/h Specific cell-maintenance rate defined in Eq. (8) - c Mass fraction of carbon in the biomass - E g/l Ethanol concentration - f x Correction factor defined in Eq. (13) - f x Correction factor defined in Eq. (13) - f xi Correction factor defined in Eq. (14) - k d1/h Death constant - M E Ethanol molecular weight - M s Xylose molecular weight - M xi Xylitol molecular weight - m g xylose/g biomass Maintenance coefficient for substrate - m dg xylose/g biomass Maintenance coefficient when k d - q Eg ethanol/g biomass. Specific ethanol production rate - s g/l Residual xylose concentration - s 0 g/l Initial xylose concentration - t h Time - x g/l Biomass concentration - x 0 g/l Initial biomass concentration - Y E/sg ethanol/g xylose Instantaneous ethanol yield - ¯Y E/sg ethanol/g xylose Mean ethanol yield - Y E s/T g ethanol/g xylose Theoretical ethanol yield - Y E s/* g ethanol/g xylose Corrected instantaneous ethanol yield - ¯Y E s/* g ethanol/g xylose Corrected mean ethanol yield - Y x/sg biomass/g xylose Biomass yield - ¯Y xi/sg xylitol/g xylose Mean xylitol yield Greek Letters g ethanol/g biomass Growth-associated product formation parameter - g ethanol/g biomass.h Non-growth-associated product formation parameter - dg ethanol/g biomass.h Non-growth-associated product formation parameter when k d0 - h Variable defined in Eq. (6) or Eq. (7) - 1/h Specific growth rate - m1/h Maximum specific growth rate  相似文献   

6.
Ulva rigida was cultivated in 7501 tanks at different densities with direct and continuous inflow (at 2, 4, 8 and 12 volumes d–1) of the effluents from a commercial marine fishpond (40 metric tonnes, Tm, of Sparus aurata, water exchange rate of 16 m3 Tm–1) in order to assess the maximum and optimum dissolved inorganic nitrogen (DIN) uptake rate and the annual stability of the Ulva tank biofiltering system. Maximum yields (40 g DW m–2 d–1) were obtained at a density of 2.5 g FW 1–1 and at a DIN inflow rate of 1.7 g DIN m–2 d–1. Maximum DIN uptake rates were obtained during summer (2.2 g DIN M–2 d–1), and minimum in winter (1.1 g DIN m–2 d–1) with a yearly average DIN uptake rate of 1.77 g DIN m–2 d–1 At yearly average DIN removal efficiency (2.0 g DIN m–2 d–1, if winter period is excluded), 153 m2 of Ulva tank surface would be needed to recover 100% of the DIN produced by 1 Tm of fish.Abbreviations DIN= dissolved inorganic nitrogen (NH inf4 sup+ + NO inf3 sup– + NO inf2 sup– ); - FW= fresh weight; - DW= dry weight; - PFD= photon flux density; - V= DIN uptake rate  相似文献   

7.
At temperatures lower than 37°C, the ethanol inhibition constant (Ki) for growth or fermentation inrho + cells of theSaccharomyces cerevisiae strain S288C was always higher (1.1M) than inrho mutants (0.7M). At 37°C these differences disappeared, and both strains were equally inhibited by ethanol (Ki=0.7m). Mitochondrial activity can be inhibited by high ethanol concentration and temperature. In fact, the stronger inhibition by ethanol of therho + strain at 37°C was due to the fact that, under these conditions, this strain loses the advantage conferred by mitochondrial activity since the induction ofrho cells in the population is very high. This does not result in an increase in the frequency ofrho mutants because of the poor viability of these mutants in conditions of high temperature and ethanol. In consequence, S288C strain becomes as strongly inhibited by ethanol as therho mutant strains. Differences in viability were not related to the fatty acids and ergosterol composition of the strain. In the presence of ethanol, bothrho + andrho strains modified their lipids in the same way, but these changes did not improve their ethanol tolerance. They were not due to differences in adaptation to ethanol either, since after successive transfers in ethanol, growth () and fermentation () rates in therho mutants were increasingly inhibited with time, whereas in the S288C strain inhibition of and by ethanol remained unaltered. Rather,rho mutants are less viable thanrho + cells because of the inability of the former to respire. At 37°C the Ki increased to 0.9M ethanol either when mitochondrial from highly ethanol-tolerant wine yeasts were transferred torho mutants of the strain S288C or when the mitochondria of strain S288C were preadapted by growing the strain in glycerol instead of glucose before it was cultivated in ethanol.  相似文献   

8.
The problem of optimising agitation and aeration in a given fermenter is addressed. The objective function is total electric power consumed for agitation, compression and refrigeration. The major constraint considered is to ensure that the dissolved oxygen concentration is above the critical value. It is shown that it is possible to analytically calculate the optimal pair (air flowrate, stirrer speed) and that, at least for the industrial antibiotics fermentation used as case-study, the optimum lies within a window for satisfactory operation, limited by other possible constraints to the problem. Savings achievable by optimal operation as compared with current industrial procedure were found to be around 10% at pilot plant scale (0.26 m3) and 20% at full scale (85 m3).List of Symbols A fermenter cross sectional area (m2) - C dissolved oxygen concentration (mole m–3) - C * DO concentration in equilibrium with the gas (mole m–3) - C crit critical DO concentration (mole m–3) - C p specific heat of air at constant pressure (J kg–1 K–1) - C sp dissolved oxygen set point (mole m–3) - C v specific heat of air at constant volume (J kg–1 K–1) - D agitator diameter (m) - f pressure correction of air flow-rate - (Fl g)F aeration number at flooding - (Fr g)F froude number at flooding - k coefficient in expression for mass transfer coefficient - K La volumetric oxygen transfer coefficient (s–1) - m power exponent in expression for mass transfer coefficient - n gas flow rate exponent in expression for mass transfer coefficient - n * number of impellers - N rotation speed (s–1) - N F rotation speed at flooding (s–1) - N p unaerated power number - N pg aerated power number - OUR Oxygen Uptake Rate (mole m–3 s–1) - p 0 atmospheric pressure (N m–2) - p 1 compressor exit pressure (N m–2) - p 2 pressure at the bottom of the fermenter (N m–2) - p 3 pressure at the top of the fermenter (N m–2) - P c compression power (W) - P d power added by expansion (W) - P ev power removed by evaporation (W) - P g agitation power (W) - P m power added by metabolism (W) - P r power removed by refrigeration (W) - P t total power (W) - Q air flow-rate at atmospheric conditions (m3 s–1) - Q f air flow-rate at average fermenter conditions (m3 s–1) - s 0 absolute humidity at atmospheric conditions - s 3 absolute humidity at fermenter exit - T tank diameter (m) - V liquid volume (m3) - v s gas superficial velocity (m s–1) - i parameter defined in the text - safety margin for dissolved oxygen (mole m–3) - ratio of specific heats of air - g agitation efficiency - c compression efficiency - r refrigeration efficiency - liquid density (kg m–3) - g air density (kg m–3) - latent heat of vaporisation of water (J kg–1) The authors are grateful to Elsa Silva, Carlos Lopes, Carlos Aguiar, Fernando Mendes, and Alexandre Cardoso, who helped with parts of this work, and to CIPAN for permission to publish these data.  相似文献   

9.
An ethanol hyper-producing clostridial strain, I-1-B, was isolated from Shibi hot spring, Kagoshima prefecture and identified as Clostridium thermocellum based on morphological and physiological proper­ ties. The carbohydrates used as energy sources were glucose, fructose, cellobiose, cellulose and esculin. Fermentation products were ethanol, lactate, acetate, formate, carbon dioxide, and hydrogen. The optimum, maximum, and minimum temperature for growth are about 60, 70, and 47°C, respectively. Optimum pH for growth is about 7.5, and growth occurs at starting pH between 6.0 and 9.0. I-1-B strain has strong tolerance for ethanol and hyper ethanol-productivity. Ethanol concentrations causing 50%. decrease of growth yield are 27 and 16g/liter for I-1-B and ATCC27405 of C. thermocellum, respectively. The organism was cultured on a medium containing 80 g/liter cellulose at 60°C for 156 h. The culture was fed with a vitamin mixture containing vitamin B12 and mineral salts solution at intervals. In this culture the organism produced 23.6 g/liter (512mM) ethanol, 8.5 g/liter (94mM) lactate, 2.9 g/liter (48mM) acetate, and 0.9 g/liter (20mM) formate. The molar ratio of ethanol to total acidic products was 3.2. The ethanol productivity of the strain I-1-B is superior to any of the wild and mutant strains of C. thermocellum so far reported.  相似文献   

10.
Rhodospirillum rubrum was grown continuously and photoheterotrophically under light limitation using a cylindrical photobioreactor in which the steady state biomass concentration was varied between 0.4 to 4 kg m–3 at a constant radiant incident flux of 100 W m–2. Kinetic and stoichiometric models for the growth are proposed. The biomass productivities, acetate consumption rate and the CO2 production rate can be quantitatively predicted to a high level of accuracy by the proposed model calculations. Nomenclature: C X, biomass concentration (kg m–3) D, dilution rate (h–1) Ea, mean mass absorption coefficient (m2 kg–1) I , total available radiant light energy (W m–2) K, half saturation constant for light (W m–2) R W, boundary radius defining the working illuminated volume (m) r X, local biomass volumetric rate (kg m–3 h–1) <r X>, mean volumetric growth rate (kg m–3 h–1) V W, illuminated working volume in the PBR (m–3). Greek letters: , working illuminated fraction (–) M, maximum quantum yield (–) bar, mean energetic yield (kg J–1).  相似文献   

11.
Ultraviolet (UV) lethality was increased when puromycin aminonucleoside (PAN) (3.0 mM) was added to the postirradiation medium ofEscherichia coli strains. The extent of repair inhibition differed greatly for strains WP-2hcr +, B/r()hcr +, WP-2hcr , and Bs-1hcr . The interaction between PAN and UV was synergistic in thehcr + strains. PAN enhanced UV lethality in strain B/r () to a greater degree than in WP-2hcr +. There was no UV lethality enhancement by PAN (3.0 mM) in thehcr strains, but the interaction of PAN (8.0 mM) with UV was synergistic. PAN decreased plaque formation of T1 UV-irradiated phage plated onE. coli Bhcr + but had no effect on phage plated on Bs-1 or WP-2hcr strains. These results suggest that PAN interferes with thehcr function in UV-irradiated bacteria.  相似文献   

12.
In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS, S2–) of over 1–2 mg/liter (30–60M) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45C and at approximately 300 to 700Ein/m2/sec of visible radiation. Sulfide (0.6–1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30M tolerated at least 1 mM without inhibition. A normal14C-HCO3 photoincorporation rate was sustained with 0.6–1 mM sulfide in the presence of DCMU (7M) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O3 2– SO3 2–, S2O4 2– thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant.  相似文献   

13.
Leech blood apparently contains considerably less chloride than generally used in physiological experi ments. Instead of 85–130 mM Cl used in experimental salines, leech blood contains around 40 mM Cl and up to 45 mM organic anions, in particular malate. We have reinvestigated the distribution of Cl across the cell membrane of identified glial cells and neurones in the central nervous system of the leech Hirudo medicinalis L., using double-barrelled Cl- and pH-selective micro electrodes, in a conventional leech saline, and in a saline with a low Cl concentration (40 mM), containing 40 mM malate. The interference of anions other than Clto the response of the ion-selective microelectrodes was estimated in Cl-free salines (Cl replaced by malate and/or gluconate). The results show that the absolute intracellu lar Cl activities (aCli) in glial cells and neurones, but not the electrochemical gradients of Cl across the glial and the neuronal cell membranes, are altered in the low Cl, malate-based saline. In Retzius neurones, aCli is lower than expected from electrochemical equilibrium, while in pressure neurones and in neuropil glial cells, aCli is distributed close to its equilibrium in both salines, re spectively. The steady-state intracellular pH values in the glial cells and Retzius neurones are little affected (0.1 pH units) in the low Cl, malate-based saline.  相似文献   

14.
1. The aim of this study was to elucidate the effect of metabolic inhibition on the membrane potential and ion conductance of rat astrocytes. The metabolic inhibitors investigated were dinitrophenol (DNP), carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), cyanide, and oligomycin.2. Primary cultures of astroglial cells from newborn rat cerebral cortex were cultivated for 13–20 days on chamber slides. The effect of metabolic inhibitors on the cellular ATP concentration was estimated from the decrease in peak chemiluminescence from the luciferin/luciferase reaction. The membrane potential and ion conductances were measured from whole-cell recordings with the patch-clamp technique.3. After 2.0 min of incubation ATP decreased from the control level to 43%with cyanide (2 mM), 58% with DNP (1 mM), 47% with FCCP (1 M), and 69% with oligomycin (10 M).4. Under normal conditions V was –74.4±1.0 mV. DNP and FCCP both caused a rapid and reversible depolarization equivalent to a shift in the I/V curve of 8.2±1.3 and 19.7±3.8 mV, respectively. DNP decreased the slope conductance (g) by 22.1% but FCCP had no significant effect on g. In contrast, neither oligomycin nor cyanide had any significant effect on the I/V curve.5. Tetraethylammonium (TEA; 10 mM) depolarized the cells by 7.1±2.0 mV but had no significant effect on g. In the presence of TEA, DNP caused a depolarization of 52.8±3.5 mV and increased g by 45.5±9.6%. The action of FCCP was not affected by the presence of TEA.6. Perfusion of the astrocytes with a Cl free solution inhibited the action of DNP and FCCP. Thus the depolarization was only 4.2±1.5mV in DNP and 3.7±0.3 mV in FCCP, which were significantly smaller effects than in the presence of a high intracellular [Cl].7. Block of tentative KATP channels with tolbutamide (1 mM) or Cl channels with Zn2+ (1 mM) did not inhibit the depolarization caused by DNP or FCCP.8. In conclusion, DNP and FCCP have specific effects on the plasmalemma in rat astrocytes which may be due to opening of Cl channels. This effect was not seen with cyanide or oligomycin and should be considered as a possible complication when DNP and FCCP are used for metabolic inhibition.  相似文献   

15.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

16.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

17.
Chi Lin  Chuan  Huei Kao  Ching 《Plant and Soil》2001,237(1):165-171
The relative importance of endogenous abscisic acid (ABA), as well as Na+ and Cl in NaCl-induced responses related to growth in roots of rice seedlings were investigated. The increase in ammonium, proline and H2O2 levels, and cell wall peroxidase (POD) activity has been shown to be related to NaCl-inhibited root growth of rice seedlings. Increasing concentrations of NaCl from 50 to 150 mM progressively decreased root growth and increased both Na+ and Cl. Treatment with NaCl in the presence of 4,4-diisothiocyano-2,2-disulfonic acid (DIDS, a nonpermeating amino-reactive disulfonic acid known to inhibit the uptake of Cl) had less Cl level in roots than that in the absence of DIDS, but did not affect the levels of Na+, and responses related to growth in roots. Treatment with 50 mM Na-gluconate (the anion of which is not permeable to membrane) had similar Na+ level in roots as that with 100 mM NaCl. It was found that treatment with 50 mM Na-gluconate effected growth reduction and growth-related responses in roots in the same way as 100 mM NaCl. All these results suggest that Cl is not required for NaCl-induced responses in root of rice seedlings. Endogenous ABA level showed no increase in roots of rice seedlings exposed to 150 mM NaCl. It is unlikely that ABA is associated with NaCl-inhibited root growth of rice seedlings.  相似文献   

18.
Phosphomannomutase (PMM) activity was detected in the soluble cytoplasmic fraction of crude extracts of both mucoid (alginate-producing) and nonmucoid strains ofPseudomonas aeruginosa. The enzyme activity was concentrated and partially purified from cell extracts of mucoid strain V388 by precipitation with ammonium sulfate and by molecular exclusion chromatography. These preparations catalyzed the conversion of mannose 1-phosphate to mannose 6-phosphate in a coupled assay system that contained commercial phosphomannoisomerase, phosphoglucoisomerase, and glucose 6-phosphate dehydrogenase. Catalytic activity in this system was strictly dependent on the presence of glucose 1,6-diphosphate (apparent Km, 150 M) and exhibited a pH optimum of around 9 in Bicine-NaOH buffer. PMM exhibited an apparent Km of 60 M for mannose 1-phosphate, but concentrations greater than 150 M caused significant inhibition. Specific activities of PMM were consistently higher in the soluble fractions of mucoid strains (1.2–3.6 nmol/min/mg protein) than of nonmucoid strains (0.2–0.6 nmol/min/mg protein).  相似文献   

19.
1. In Lymnaea stagnalis L. (Pulmonata, Basommatophora) the neurons in the osphradium were visualized by staining through the inner right parietal nerve by 5,6-carboxyfluorescein (5,6-CF). Three types of neurons were identified: three large ganglionic cells (GC1-3; 80–100 m), the small putative sensory neurons (SC; 20 m) and very small sensory cells (3–5 m).2. The ganglionic and putative sensory neurons were investigated by whole cell patch-clamp method in current-clamp condition. The three giant ganglionic neurons (GC1-3) located closely to the root of osphradial nerve, had a membrane potential (MP) between –30 and –70 mV and showed tonic or bursting activities. The small putative sensory cells (SCs) scattered throughout the osphradial ganglion, possessed a MP between –25 and –55 mV and showed an irregular firing pattern with membrane oscillations. At resting MP the GC1-3 cells were depolarized and increased the frequency of their firing, while the SCs were hyperpolarized and inhibited by NaCl (10–2 M) and L-aspartate (10–5 M) applied to the osphradium.3. 5-Hydroxytryptamine (5HT, 10–6 M), -aminobutyric acid (GABA; 10–6 M) and the GABAB agonist baclofen (10–6 M) depolarized the neurons GC1-3 and increased their firing frequency. In contrast, on the GC1-3 neurons, acetylcholine (Ach; 10–6 M) and FMRFamide (10–6 M) caused hyperpolarization and cessation of the firing activity. The 5HT effect was blocked by mianserin (10–6 M) but picrotoxin (10–5 M) failed to block the GABA-induced effect on the GC1-3 cells.4. The small putative sensory neurons (SCs) were excited by Ach (10–6 M) and 5HT (10–6 M) but were inhibited by GABA (10–6 M). FMRFamide (10–6 M) had a biphasic response. The Ach effect was blocked by hexamethonium (10–6 M) and tetraethylammonium (10–6 M), indicating the involvement of nicotinic cholinergic receptors.5. The distinct responses of the two populations of osphradial neurons to chemical stimuli and neurotransmitters suggest that they can differently perceive signals from environment and hemolymph.  相似文献   

20.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号