首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of pterin-dependent phenylalanine hydroxylase from Chromobacterium violaceum with the cofactor analogue 5-deaza-6-methyltetrahydropterin and the cofactor 6,7-dimethyltetrahydropterin (DMPH4) has been investigated by multifrequency electron spin resonance (ESR) spectroscopy. 5-Deaza-6-methyltetrahydropterin, which lacks the N-5 nitrogen present in the pyrazine ring of DMPH4, binds tightly to the cupric form of the enzyme; however, no changes are observed in the ESR parameters of the copper center. In contrast, the binding of DMPH4 (or 6-methyltetrahydropterin) shifts the ESR parameters (g and A) associated with the cupric enzyme. In addition, superhyperfine transitions were resolved and assigned to hyperfine splitting from nitrogen ligands. ESR spectra of the enzyme recorded in the presence of [5-14N]DMPH4 or [5-15N]DMPH4 were computer simulated and found to be consistent with pterin serving as a direct donor ligand to the copper center through the N-5 position.  相似文献   

2.
The uncoupled portion of the partially uncoupled oxidation of tetrahydropterins by phenylalanine hydroxylase can be described by the same model as we have recently derived for the fully uncoupled reaction (Davis, M.D. and Kaufman, S. (1989) J. Biol. Chem.264, 8585–8596). Although essentially no hydrogen peroxide is formed during the fully coupled oxidation of tetrahydrobiopterin or 6-methyltetrahydropterin by phenylalanine hydroxylase when phenylalanine is the amino acid substrate, significant amounts of hydrogen peroxide are formed during the partially uncoupled oxidation of 6-methyltetrahydropterin whenpara-fluorophenylalanine orpara-chlorophenylalanine are used in place of phenylalanine. Similarly, during the partially uncoupled oxidation of the unsubstituted pterin, tetrahydropterin, even in the presence of phenylalanine, hydrogen peroxide formation is detected. The 4a-carbinolamine tetrahydropterin intermediate has been observed during the fully uncoupled tyrosine-dependent oxidations of tetrahydropterin and 6-methyltetrahydropterin by lysolecithin-activated phenylalanine hydroxylase, suggesting that this species is also a common intermediate for uncoupled oxidations by this enzyme.Abbreviations BH4 6-[dihydroxypropyl-(L-erythro)-5,6,7,8-tetrahydropterin (tetrahydrobiopterin) - 6MPH4 6-methyl-5,6,7,8-tetrahydropterin - PH4 5,6,7,8-tetrahydropterin - BH3OH 4a-hydroxytetrahydropterin (4a-carbinolamine) - qBH2 quinonoid dihydrobiopterin - q6MPH2 quinonoid dihydro-6-methylpterin - qPH2 quinoid dihydropterin - PAH phenylalanine hydroxylase - DHPR dihydropteridine reductase - PHS phenylalanine hydroxylase stimulating enzyme which is 4a-carbinolamine dehydratase - SOD superoxide dismutase - HPLC high performance liquid chromatography - R.T. retention time Special issue dedicated to Dr. Santiago Grisolia.  相似文献   

3.
A method was developed to study the unsupplemented phenylalanine hydroxylase system in rat liver slices. All of the components of the system--tetrahydrobiopterin, dihydropteridine reductase, and the hydroxylase itself--are present under conditions which should be representative of the actual physiological state of the animal. The properties of the system in liver slices have been compared to those of the purified enzyme in vitro. The three pterins, tetrahydrobiopterin, 6,7-dimethyltetrahydropterin, and 6-methyltetrahydropterin, all stimulate the hydroxylation of phenylalanine when added to the liver slice medium in the presence of a chemical reducing agent. The relative velocities found at 1 mM phenylalanine and saturating pterin concentrations are: tetrahydrobiopterin, 1; 6,7-dimethyltetrahydropterin, 2.5; 6-methyltetrahydropterin, 13. This ratio of activities is similar to that found for the purified, native phenylalanine hydroxylase and indicates that the enzyme in vivo is predominantly in the native form. Rats pretreated with 6-methyltetrahydropterin showed enhanced phenylalanine hydroxylase activity in liver slices demonstrating for the first time that an exogenous tetrahydropterin can interact with the phenylalanine hydroxylase system in vivo. This finding opens up the possibility of treating phenylketonurics who still possess some residual phenylalanine hydroxylase activity with a tetrahydropterin like 6-methyltetrahydropterin which can give a large increase in rate over that seen with the natural cofactor, tetrahydrobiopterin.  相似文献   

4.
Phenylalanine hydroxylase undergoes an obligatory prereduction step in order to become catalytically active as shown by stopped-flow kinetics and by measuring tyrosine formation at limiting 6-methyltetrahydropterin levels. This initial step requires oxygen and involves conversion of 6-methyltetrahydropterin directly to the quinonoid form with or without phenylalanine. The EPR spectrum of the resting enzyme (geff = 9.4-8.7, 4.3 and geff = 6.7, 5.4) is consistent with two species possessing distinctively different ligand environments for the non-heme, high-spin Fe3+. The intensity of the geff congruent to 4.3 feature is inversely proportional to the specific activity of the enzyme, whereas the intensity of the geff congruent to 6.7-5.4 region correlates with the activity of the enzyme. The latter features are lost upon addition of phenylalanine under anaerobic or aerobic conditions. In the presence of o-phenanthroline, the operation of the prereduction step results in nearly quantitative trapping of the iron in an Fe2+ redox state. Dithionite can substitute for 6-methyltetrahydropterin in an anaerobic prereduction step, generating a catalytically active phenylalanine hydroxylase containing Fe2+ that functions aerobically to produce tyrosine from added 6-methyltetrahydropterin in a 1/1 stoichiometry. Reductive titration of the hydroxylase by dithionite is consistent with the addition of one electron/subunit for coupled turnover. The implications of these findings for the mechanism of action of this enzyme are briefly discussed.  相似文献   

5.
D(-)beta-hydroxybutyrate dehydrogenase (BDH) purified from bovine heart mitochondria contains essential thiol and carboxyl groups. A tryptic BDH peptide labeled at an essential thiol with [3H]N-ethylmaleimide (NEM), and another tryptic peptide labeled at an essential carboxyl with N,N'-dicyclohexyl [14C]carbodiimide (DCCD), were isolated and sequenced. The peptide labeled with [3H]NEM had the sequence Met.Glu.Ser.Tyr.Cys*.Thr.Ser. Gly.Ser.Thr.Asp.Thr.Ser.Pro.Val.Ile.Lys. The label was at Cys. The same peptide was isolated from tryptic digests of BDH labeled at its nucleotide-binding site with the photoaffinity labeling reagent, arylazido- -[3-3H] alanyl-NAD. These results suggest that the essential thiol of BDH is located at its nucleotide-binding site, and agree with our previous observation that NAD and NADH protect BDH against inhibition by thiol modifiers. The [14C]DCCD-labeled peptide had the sequence Glu.Val.Ala.Glu*.Val. Asn. Leu.Trp.Gly.Thr.Val.Arg. DCCD appeared to modify the glutamic acid residue marked by an asterisk. Sequence analogies between these peptides and other proteins have been discussed.  相似文献   

6.
PKI(6-22)amide is a 17 residue peptide corresponding to the active portion of the heat-stable inhibitor of cAMP-dependent protein kinase. The peptide is a potent (Ki = 1.6 nM), competitive inhibitor of the enzyme. The photoreactive peptide analog (4-azidophenylalanine10)PKI(6-22)amide was synthesized in both its non-radiolabeled and tritiated forms by chemical modification of precursor peptides that were prepared by stepwise solid-phase synthesis. (4-Amino[3,5-3H]phenylalanine10)PKI(6-22)amide, the precursor for the radiolabeled arylazide peptide, was obtained by catalytic reduction of the corresponding peptide containing the 3,5-diiodo-4-aminophenylalanine residue at position 10. The purified PKI peptides were analyzed by HPLC, amino acid analysis, and u.v. spectra. In the dark, (4-azidophenylalanine10)PKI(6-22)amide inhibited the catalytic subunit of cAMP-dependent protein kinase with a Ki value of 2.8 nM. The photoreactivity of the arylazide peptide was demonstrated by time-dependent u.v. spectral changes on exposure to light. Photolysis of the catalytic subunit (4-azido[3,5-3H]phenylalanine10)PKI(6-22)amide complex resulted in specific covalent labeling of the enzyme. The data indicate that this peptide is a useful photoaffinity labeling reagent for the active site of the protein kinase.  相似文献   

7.
The formation of tyrosine from phenylalanine catalyzed by rat liver phenylalanine hydroxylase is coupled to the generation of a 4a-hydroxy adduct from the requisite tetrahydropterin cofactor. As indicated by its circular dichroism (CD) spectrum, the optical activity of the adduct generated from racemic 6-methyltetrahydropterin requires stereoselectivity of the oxygenation. The absolute configuration of this new stereocenter is 4a(S)-hydroxy-6(RS)-methyltetrahydropterin by analogy to the CD spectrum of one of the four stereoisomers of 5-deaza-4a-hydroxy-6-methyltetrahydropterin. The source of the 4a-hydroxy oxygen is O2, as demonstrated by the observation of a 18O-induced 13C shift in the 13C NMR spectrum of the adduct when generated from [4a-13C]-6-methyltetrahydropterin and 18O2.  相似文献   

8.
R E Middleton  J B Cohen 《Biochemistry》1991,30(28):6987-6997
The agonist [3H]nicotine was used as a photoaffinity label for the acetylcholine binding sites on the Torpedo nicotinic acetylcholine receptor (AChR). [3H]nicotine binds at equilibrium with Keq = 0.6 microM to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with [3H]nicotine resulted in covalent incorporation into the alpha- and gamma-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the alpha-subunit was labeled via both agonist sites but the gamma-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Within the alpha-subunit, 93% of the labeling was contained within a 20-kDa Staphylococcus aureus V8 proteolytic fragment beginning at Ser-173. Sequence analysis of this peptide indicated that approximately 80% of the incorporation was into Tyr-198, approximately 13% was into Cys-192, and approximately 7% was into Tyr-190. Chymotryptic digestion of the alpha-subunit confirmed that Tyr-198 was the principal amino acid labeled by [3H]nicotine. This confirmation required a novel radio-sequencing strategy employing omicron-phthalaldehyde, since the efficiency of photolabeling was low (approximately 1.0%) and the labeled chymotryptic peptide was not isolated in sufficient quantity to be identified by mass. [3H]Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.  相似文献   

9.
Salmeterol is a long-acting beta2-adrenergic receptor (beta 2AR) agonist used clinically to treat asthma. In addition to binding at the active agonist site, it has been proposed that salmeterol also binds with very high affinity at a second site, termed the "exosite", and that this exosite contributes to the long duration of action of salmeterol. To determine the position of the phenyl ring of the aralkyloxyalkyl side chain of salmeterol in the beta 2AR binding site, we designed and synthesized the agonist photoaffinity label [(125)I]iodoazidosalmeterol ([125I]IAS). In direct adenylyl cyclase activation, in effects on adenylyl cyclase after pretreatment of intact cells, and in guinea pig tracheal relaxation assays, IAS and the parent drug salmeterol behave essentially the same. Significantly, the photoreactive azide of IAS is positioned on the phenyl ring at the end of the molecule which is thought to be involved in exosite binding. Carrier-free radioiodinated [125I]IAS was used to photolabel epitope-tagged human beta 2AR in membranes prepared from stably transfected HEK 293 cells. Labeling with [(125)I]IAS was blocked by 10 microM (-)-alprenolol and inhibited by addition of GTP gamma S, and [125I]IAS migrated at the same position on an SDS-PAGE gel as the beta 2AR labeled by the antagonist photoaffinity label [125I]iodoazidobenzylpindolol ([125I]IABP). The labeled receptor was purified on a nickel affinity column and cleaved with factor Xa protease at a specific sequence in the large loop between transmembrane segments 5 and 6, yielding two peptides. While the control antagonist photoaffinity label [125I]IABP labeled both the large N-terminal fragment [containing transmembranes (TMs) 1-5] and the smaller C-terminal fragment (containing TMs 6 and 7), essentially all of the [125I]IAS labeling was on the smaller C-terminal peptide containing TMs 6 and 7. This direct biochemical evidence demonstrates that when salmeterol binds to the receptor, its hydrophobic aryloxyalkyl tail is positioned near TM 6 and/or TM 7. A model of IAS binding to the beta 2AR is proposed.  相似文献   

10.
The recB and recD subunits of the recBCD enzyme (exonuclease V) from Escherichia coli were covalently photolabeled with the ATP photoaffinity analogue [alpha-32P]8-azido-ATP. The labeling was specific for ATP binding sites by the following criteria. Saturation occurs at high 8-azido-ATP concentrations with dissociation constants of 30 and 120 microM for the recD and recB subunits, respectively; ATP strongly inhibits the photolabeling; 8-azido-ATP is hydrolyzed by the recBCD enzyme and supports its double-stranded DNA exonuclease activity; and the label is largely confined to two peptides obtained by tryptic digestion of the photolabeled holoenzyme; one is derived from the recB subunit and the other from the recD subunit.  相似文献   

11.
L H DeRiemer  C F Meares 《Biochemistry》1981,20(6):1612-1617
The photoaffinity probes beta-(4-azidophenyl) adenosine 5'-diphosphate (N3PhppA) and beta-(4-azidophenyl) adenylyl-(3'--5')-uridine 5'-diphosphate (N3PhppApU) were used to determine the RNA polymerase subunit contacts made by the 5' ends of three nascent RNA chains. Ternary enzyme-poly[d(A-T)].oligonucleotide complexes were prepared in which the nascent oligonucleotide contained a photoaffinity label at the 5' end and a 32P radiolabel only at the 3' end. The length of the RNA was fixed at two, three, or four nucleotides. Photolysis of the ternary complexes was followed by dissociation, polyacrylamide gel electrophoresis, autoradiography, and scintillation counting. With a dinucleotide probe, the enzyme subunits labeled were beta' (71%) and sigma (21%). Photolysis of the ternary complex containing trinucleotide RNA also resulted in labeling of the beta' (64%) and sigma (35%) subunits. With a tetranucleotide, the beta' subunit was very heavily labeled (88%), and a small amount of labeling of the beta (7%) and sigma (4%) subunits was observed. The alpha subunit was not labeled with any of the probes. These results imply that a conformational change, possibly involving dissociation of the sigma subunit, occurs in the enzyme as the ribonucleotide is elongated from a tri- to a tetranucleotide.  相似文献   

12.
A and B subunits of the V-type Na+-ATPase from Enterococcus hirae were suggested to possess nucleotide binding sites (Murata, T. et al., J. Biochem., 132, 789-794 (2002)), although the B subunit did not have the consensus sequence for nucleotide binding. To further characterize the binding sites in the V-ATPase, we did the photoaffinity labeling study using 8-azido-[alpha-32P]ATP. A and B subunits were labeled with 8-azido-[alpha-32P]ATP when analysed with SDS polyacrylamide gel electrophoresis. The peptide fragment of A subunit obtained by lysyl endopeptidase digestion after labeling showed a molecular size of 9 kDa and its amino acid sequencing revealed that it corresponded to residues Arg423-Lys494. The peptide fragment from B subunit after photoaffinity labeling and lysyl endopeptidase digestion showed the size of 5 kDa and corresponded to residues Phe404-Lys443. In our structure model, these peptides were close to the adenine ring of ATP. We suggest that non-catalytic B subunit of E. hirae V-ATPase has a nucleotide binding site, similarly to eukaryotic V-ATPases and F-ATPases.  相似文献   

13.
The mechanism of phenylalanine hydroxylase   总被引:1,自引:0,他引:1  
The site of oxygen binding during phenylalanine hydroxylase (PAH)-catalyzed turnover of phenylalanine to tyrosine has been tentatively identified as the 4a position of the tetrahydropterin cofactor, based on the spectral characteristics of an intermediate generated from both 6-methyltetrahydropterin and tetrahydrobiopterin during turnover. The rates of appearance of the intermediate and tyrosine are equal. Both rates exhibit the same dependence on enzyme concentration. PAH also requires 1.0 iron per 50,000-dalton subunit for maximal activity. A direct correlation between iron content and specific activity has been demonstrated. Apoenzyme can be reactivated by addition of Fe(II) aerobically or Fe(III) anaerobically and can be repurified to give apparently native protein. Evidence from electron paramagnetic resonance implicates the presence of high spin (5/2) Fe(III). As a working hypothesis we postulate that a key complex at the active site may be one containing iron in close proximity to a 4a-peroxytetrahydropterin.  相似文献   

14.
In the presence of tyrosine, phenylalanine hydroxylase, which has been activated with lysolecithin, catalyzes the oxidation of tetrahydrobiopterin at a rate 10-20% that of the parallel reaction with phenylalanine. Unlike the reaction with phenylalanine, there is no net concomitant hydroxylation of tyrosine, although the amino acid is still a necessary component. Tyrosine appears to form an abortive complex with the activated enzyme, the pterin cofactor and molecular oxygen. The Km for tetrahydrobiopterin is identical for the reactions with phenylalanine and tyrosine, whereas the Km for tyrosine is approximately 3 1/2 times greater than the Km for phenylalanine. The tyrosine-dependent oxidation of tetrahydrobiopterin proceeds at both pH 6.8 and 8.2 and shows a similar dependence on the pH as that of the physiological reaction. Tetrahydrobiopterin can be replaced by the artificial cofactor, 6-methyltetrahydropterin, in the tyrosine-dependent oxidation at both pH 6.8 and 8.2. As in the parallel reaction with phenylalanine, both the Km for the cofactor and the Km for the aromatic amino acid increase with this substitution.  相似文献   

15.
E W Miles  R S Phillips 《Biochemistry》1985,24(17):4694-4703
The photoaffinity reagent 6-azido-L-tryptophan was synthesized by chemical methods. It binds reversibly in the dark to the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli and forms a quinonoid intermediate with enzyme-bound pyridoxal phosphate (lambda max = 476 nm). The absorbance of this chromophore has been used for spectrophotometric titrations to determine the binding of 6-azido-L-tryptophan (the half-saturation value [S]0.5 = 6.3 microM). Photolysis of the quinonoid form of the alpha 2 beta 2 complex results in time-dependent inactivation of the beta 2 subunit but not of the alpha subunit. The extent of photoinactivation is directly proportional to the absorbance at 476 nm of the quinonoid intermediate prior to photolysis. The substrate L-serine is a competitive inhibitor of 6-azido-L-tryptophan binding and photoinactivation. The competitive inhibitors L-tryptophan, D-tryptophan, and oxindolyl-L-alanine also protect against photoinactivation. The results demonstrate that 6-azido-L-tryptophan is a quasi-substrate for the alpha 2 beta 2 complex of tryptophan synthase and that photolysis of the enzyme-quasi-substrate quinonoid intermediate results in photoinactivation. The modified alpha 2 beta 2 complex retains its ability to bind pyridoxal phosphate and to cleave indole-3-glycerol phosphate, a reaction catalyzed by the alpha subunit. 6-Azido-L-tryptophan (side-chain 1,2,3-14C3 labeled) was synthesized enzymatically from 6-azidoindole and uniformly labeled L-[14C]serine by the alpha 2 beta 2 complex of tryptophan synthase on a preparative scale and has been isolated. Incorporation of 14C label from 6-azido-L-[14C]tryptophan is stoichiometric with inactivation. Our finding that most of the incorporated 14C label is bound in an unstable linkage suggests that an active site carboxyl residue is the major site of photoaffinity labeling by 6-azido-L-tryptophan.  相似文献   

16.
Immunopurified human sex hormone binding globulin (SHBG) was photoinactivated and photolabeled by radioinert and radioactive photoaffinity labeling steroids delta 6-testosterone (delta 6-T) and delta 6-estradiol (delta 6-E2). The maximal levels of specific incorporation of these two reagents were 0.50 and 0.33 mol of label/mol of SHBG, respectively. Covalently labeled SHBG fractions were citraconylated, reduced, carboxymethylated, and cleaved by trypsin. Separation of tryptic digests by reverse-phase liquid chromatography gave single radioactive peaks at the same retention times with both steroid reagents. However, the two labeled peptidic fractions could be distinguished by capillary electrophoresis and immunodetection with anti-steroid antibodies, whereas the covalent attachment of radioactivity was confirmed by thin-layer chromatography on silica gel. Edman degradation of the two labeled peptides showed a single sequence His-Pro-Ile-([3H]X)-Arg corresponding to the pentapeptide His-Pro-Ile-Met-Arg 136-140 of SHBG sequence. The coincidence, in both cases, of the absence of an identifiable amino acid residue and of the elution of the most intense peak of radioactivity at the fourth cycle of Edman degradation suggests that the same Met-139 residue was labeled by delta 6-[1,2-3H2]T or by delta 6-[17 alpha-3H]E2. Liquid secondary ion mass spectrometry of the two peptides showed [M+H]+ ions at m/z 939.8 or 923.8, corresponding respectively to the addition of delta 6-T or delta 6-E2 to the pentapeptide. The presence of the steroid molecule in the delta 6-[3H]T-pentapeptide conjugate was confirmed by the difference of 2 mass units with the [M+H]+ peak of the delta 6-[4-14C]T-pentapeptide conjugate.  相似文献   

17.
The structure of the human beta-adrenergic receptor in purified basal membranes of human placental syncytiotrophoblast was probed using photoaffinity labeling. Basal membranes display a high specific activity of receptors (4-5 pmol/mg protein) and possess both beta 1- and beta 2-adrenergic receptors subtypes. Autoradiography of membranes that were incubated with the beta-adrenergic antagonist [125I]iodoazidobenzylpindolol, photolyzed and then subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, identified four radiolabeled peptides, Mr = 65-kDa, 54-kDa, 43-kDa and a novel higher molecular weight 76-kDa form of the receptor. Photoaffinity labeling of each of these four peptides displayed the pharmacological properties expected for true beta-adrenergic receptors. The 76-kDa photoaffinity labeled receptor peptide observed in human placenta basal membranes has not been reported elsewhere. Competition studies with the beta1-selective ligand CGP-20712A demonstrate that the photoaffinity labeled receptor peptides are composed of both beta 1- and beta 2-adrenergic receptor subtypes.  相似文献   

18.
R Vince  J Brownell  K L Fong 《Biochemistry》1978,17(25):5489-5493
A photoaffinity labeling puromycin analogue, Nepsilon-(2-nitro-4-azidophenyl)-L-lysinyl puromycin aminonucleoside (NAP-Lys-Pan), was synthesized and used for investigation of the peptidyl transferase center of 70S riobsomes. Visible light irradiation of NAP-Lys-Pan led to covalent linkage of the analogue with Escherichia coli ribosomes. In a subsequent step, poly(uridylic acid) was employed to direct Ac[14C]Phe-tRNA to the P sites of the photolabeled ribosomes. Transpeptidation of Ac[14C]phenylalanine to the bound NAP-Lys-Pan resulted in selective incorporation of radioactive label into the peptidyl transferase A site. Dissociation of the ribosomes into subunits, and digestion of the RNA components, indicated that the radioactive label was incorporated into a protein fraction of the 50S subunit.  相似文献   

19.
Direct photoaffinity labeling of purified bovine heart NADH:ubiquinone oxidoreductase (complex I) with 32P-labeled NAD(H), NADP(H) and ADP has shown that five polypeptides become labeled, with molecular masses of 51, 42, 39, 30, and 18-20 kDa. The 51 and the 30-kDa polypeptides were labeled with either [32P]NAD(H), [32P]NADP(H) or [beta-32P]ADP. The 42-kDa polypeptide was labeled with [32P]NAD(H) and to a small extent with [beta-32P]ADP. It was not labeled with [32P]NADP(H). The 39-kDa polypeptide was labeled with [32P]NADPH and to a small extent with [beta-32P]ADP. Our previous studies had shown that this subunit also binds NADP, but not NAD(H) [Yamaguchi, M., Belogrudov, G.I. & Hatefi, Y. (1998) J. Biol. Chem. 273, 8094-8098]. The 18-20-kDa polypeptide was labeled only with [32P]NADPH. Among these polypeptides, the 51-kDa subunit is known to contain FMN and a [4Fe-4S] cluster, and is the NAD(P)H-binding subunit of the primary dehydrogenase domain of complex I. The possible roles of the other nucleotide-binding subunits of complex I have been discussed.  相似文献   

20.
A recently described new form of hyperphenylalaninemia is characterized by the excretion of 7-substituted isomers of biopterin and neopterin and 7-oxo-biopterin in the urine of patients. It has been shown that the 7-substituted isomers of biopterin and neopterin derive from L-tetrahydrobiopterin and D-tetrahydroneopterin and are formed during hydroxylation of phenylalanine to tyrosine with rat liver dehydratase-free phenylalanine hydroxylase. We have now obtained identical results using human phenylalanine hydroxylase. The identity of the pterin formed in vitro and derived from L-tetrahydrobiopterin as 7-(1',2'-dihydroxypropyl)pterin was proven by gas-chromatography mass spectrometry. Tetrahydroneopterin and 6-hydroxymethyltetrahydropterin also are converted to their corresponding 7-substituted isomers and serve as cofactors in the phenylalanine hydroxylase reaction. Dihydroneopterin is converted by dihydrofolate reductase to the tetrahydro form which is biologically active as a cofactor for the aromatic amino acid monooxygenases. The 6-substituted pterin to 7-substituted pterin conversion occurs in the absence of pterin-4a-carbinolamine dehydratase and is shown to be a nonenzymatic process. 7-Tetrahydrobiopterin is both a substrate (cofactor) and a competitive inhibitor with 6-tetrahydrobiopterin (Ki approximately 8 microM) in the phenylalanine hydroxylase reaction. For the first time, the formation of 7-substituted pterins from their 6-substituted isomers has been demonstrated with tyrosine hydroxylase, another important mammalian enzyme which functions in the hydroxylation of phenylalanine and tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号