首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used mitogenic lectin (PHA) and a monoclonal antibody (OKT3) to stimulate human peripheral blood (G0) lymphocytes, in the presence of monocytes, and have found two major preferentially synthesized proteins, 73 and 95 kD, which are induced by the mitogens. The elevated synthesis of both proteins begins approximately 4-6 h after mitogen addition (early to mid G0/G1) before entry into first S phase. Maximum synthesis of both proteins is reached by 12 h after mitogen addition when P95 synthesis represents approximately 4%, and P73 approximately 2%, of the total protein synthesis, compared with less than 0.5% for each protein in cells cultured without mitogen. Thus, the proteins appear to be major components of activated cells. We find that both P73 and P95 are induced by heat stress as well as mitogenic stimulation. The induction of the proteins is not affected by either deleting glucose from the culture media or, alternatively, by supplementing it. Using polyclonal antibodies prepared to each of the proteins isolated from mitogen activated cells and monoclonal antibodies that were raised to heat shock proteins, we are able to show that P95 is electrophoretically and immunologically identical to the HSP 90 induced by heat stress. P73 is one of the 70 kD HSPs, (termed HSC 70; Pelham, H. R. B. 1986. Cell. 46: 959-961), but is different from the most strongly heat inducible form of HSP 70 (72 kD). The distribution of both proteins in subcellular fractions of mitogen activated lymphocytes is similar to the reported localization of the respective HSP's in other cell types. The results suggest that HSP 90 and HSC 70 may have functional roles in stress response and growth processes of human lymphocytes.  相似文献   

2.
Changes in the content of constitutive and inducible proteins of the family of heat shock 70 kDa proteins (HSP70) caused by heat shock in human neutrophils, white blood cells with an atypically short lifespan, which provide a nonspecific defense of the organism against bacterial pathogens, have been studied. An analysis of the intracellular content of the constitutive and inducible HSP70 proteins by flow cytometry revealed a biphasic dynamics of changes in the protein level, which was characterized by an increase in the protein level immediately after heat shock followed by a decrease within 15–30 min after the termination of heat treatment. Because the inhibitor of protein synthesis cycloheximide did not change the dynamics profile, it was assumed that the increase in the HSP70 level is related not to the de novo synthesis of these proteins but to conformational changes of HSP70 molecules and an increased accessibility of some epitopes for antibody binding. Using a panel of antibodies specific to the N-terminal ATP-binding or the C-terminal substrate-binding domains of the protein, it was shown by cell immunofluorescence and flow cytometry that the heat shock-associated increase in the intracellular HSP70 level results from an increased efficiency of the binding of antibodies recognizing the substrate-binding domain. It was also demonstrated that the decrease in the intracellular HSP70 level after the heat shock, may be partially due to a release into the extracellular space of both the constitutive and inducible HSP70 proteins, which is regulated with the involvement of ABC-transporters.  相似文献   

3.
When eukaryotic cells are exposed to elevated temperatures they respond by vigorously synthesizing a small group of proteins called the heat shock proteins. An essential element in defining the role of these proteins is determining whether they are unique to a stressed state or are also found in healthy, rapidly growing cells at normal temperatures. To date, there have been conflicting reports concerning the major heat-induced protein of Drosophila cells, HSP 70. We report the development of monoclonal antibodies specific for this protein. These antibodies were used to assay HSP 70 in cells incubated under different culture conditions. The protein was detectable in cells maintained at normal temperatures, but only when immunological techniques were pushed to the limits of their sensitivity. To test for the possibility that these cells contain a reservoir of protein in a cryptic antigenic state (i.e., waiting posttranslational modification for use at high temperature), we treated cells with cycloheximide or actinomycin D immediately before heat shock. HSP 70 was not detected in these cells. Finally, we tested for the presence of a reservoir of inactive messages by using a high stringency hybridization of 32P- labeled cloned gene sequences to electrophoretically separated RNAs. Although HSP 70 mRNA was detectable in rapidly growing cells, it was present at less than 1/1,000th the level achieved after induction.  相似文献   

4.
The human oesophageal epithelium is subject to damage from thermal stresses and low extracellular pH that can play a role in the cancer progression sequence, thus identifying a physiological model system that can be used to determine how stress responses control carcinogenesis. The classic heat shock protein HSP70 is not induced but rather is down-regulated after thermal injury to squamous epithelium ex vivo; this prompted a longer-term study to address the nature of the heat shock response in this cell type. An ex vivo epithelial culture system was subsequently used to identify three major proteins of 78, 70, and 58 kDa, whose steady-state levels are elevated after heat shock. Two of the three heat shock proteins were identified by mass spectrometric sequencing to be the calcium-calmodulin homologue transglutaminase-3 (78 kDa) and a recently cloned oesophageal-specific gene called C1orf10, which encodes a 53-kDa putative calcium binding protein we have named squamous epithelial heat shock protein 53 (SEP53). The 70-kDa heat shock protein (we have named SEP70) was not identifiable by mass spectrometry, but it was purified and studied immunochemically to demonstrate that it is distinct from HSP70 protein. Monoclonal antibodies to SEP70 protein were developed to indicate that: (a) SEP70 is induced by exposure of cultured cells to low pH or glucose starvation, under conditions where HSP70 protein was strikingly down-regulated; and (b) SEP70 protein exhibits variable expression in preneoplastic Barrett's epithelium under conditions where HSP70 protein is not expressed. These results indicate that human oesophageal squamous epithelium exhibits an atypical heat shock protein response, presumably due to the evolutionary adaptation of cells within this organ to survive in an unusual microenvironment exposed to chemical, thermal and acid reflux stresses.  相似文献   

5.
6.
Prosomes and heat shock complexes in Drosophila melanogaster cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Prosomes and heat shock protein (HSP) complexes isolated from the cytoplasm of Drosophila cells in culture were biochemically and immunologically characterized. The two complexes were found to separate on sucrose gradients, allowing the analysis of their protein constituents by two-dimensional polyacrylamide gel electrophoresis and by reaction with anti-HSP sera and prosome-specific monoclonal antibodies. All of the prosomal proteins were found to be clearly distinct from the HSP; none of the prosomal proteins was synthesized de novo in heat shock. However, an antiprosome (anti-p27K) monoclonal antibody (mouse anti-duck) recognizing the Drosophila p29K prosomal protein allowed immunoprecipitation from a heat-shocked postmitochondrial supernatant of the crude HSP complex, including the low- and the high-molecular-weight components, in particular the 70 x 10(3)-molecular weight HSP. The highly purified small 16S HSP complex still contained this preexistent p29K prosomal protein, which thus also seems to be a metabolically stable constituent of the HSP complex. The significance of this structural and possibly functional relationship between prosomes and HSP, involving the highly ubiquitous and evolutionarily conserved prosomal protein p27/29K, remains to be elucidated.  相似文献   

7.
8.
Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis. In humans and experimental models, death of motor neurons is preceded by formation of cytoplasmic aggregates containing mutant SOD-1 protein. In our previous studies, heat shock protein 70 (HSP70) prolonged viability of cultured motor neurons expressing mutant human SOD-1 and reduced formation of aggregates. In this paper, we report that mutant SOD-1 proteins have altered solubility in cells relative to wild-type SOD-1 and can form a direct association with HSP70 and other stress proteins. Whereas wild-type human and endogenous mouse SOD-1 were detergent-soluble, a portion of mutant SOD-1 was detergent-insoluble in protein extracts of NIH3T3 transfected with SOD-1 gene constructs, spinal cord cultures established from G93A SOD-1 transgenic mouse embryos, and lumbar spinal cord from adult G93A transgenic mice. A direct association of HSP70, HSP40, and alphaB-crystallin with mutant SOD-1 (G93A or G41S), but not wild-type or endogenous mouse SOD-1, was demonstrated by coimmunoprecipitation. Mutant SOD-1.HSP70 complexes were predominantly in the detergent-insoluble fraction. However, only a small percentage of total cellular mutant SOD-1 was detergent-insoluble, suggesting that mutation-induced alteration of protein conformation may not in itself be sufficient for direct interaction with heat shock proteins.  相似文献   

9.
Geldanamycin is an antitumor drug that binds HSP90 and induces a wide range of heat shock proteins, including HSP70s. In this study we report that the induction of HSP70s is dose-dependent in geldanamycin-treated human non-small cell lung cancer H460 cells. Analysis of the induction of HSP70s specific isoform using LC-ESI-MS/MS analysis and Northern blotting showed that HSP70-1/2 are the major inducible forms under geldanamycin treatment. Transactivation of hsp70-1/2 was determined by electrophoretic mobility-shift assay using heat shock element (HSE) as a probe. The signaling pathway mediators involved in hsp70-1/2 transactivation were screened by the kinase inhibitor scanning technique. Pretreatment with serine/threonine protein kinase inhibitors H7 or H8 blocked geldanamycin-induced HSP70-1/2, whereas protein kinase A inhibitor HA1004, protein kinase G inhibitor KT5823, and myosin light chain kinase inhibitor ML-7 had no effect. Furthermore, the protein kinase C (PKC)-specific inhibitor Ro-31-8425 and the Ca2+-dependent PKC inhibitor G?-6976 diminished geldanamycin-induced HSP70-1/2, suggesting an involvement of the PKC in the process. In addition, geldanamycin treatment causes a transient increase of intracellular Ca2+. Chelating intracellular Ca2+ with BAPTA-AM or depletion of intracellular Ca2+ store with A23187 or thapsigargin significantly decreased geldanamycin-transactivated HSP70-1/2 expression. Taken together, our results demonstrate that geldanamycin-induced specific HSP70-1/2 isoforms expression in H460 cells through signaling pathway mediated by Ca2+ and PKC.  相似文献   

10.
Clusterin (CLU), whose role is still debated, is differentially regulated in several patho-physiological processes and invariably induced during apoptosis. In heat shock response, CLU is considered a stress-inducible, pro-survival/cyto-protective factor via an HSE element present in his promoter. In both human prostate PNT1A and PC-3 epithelial cells we found that apoptotic stimuli induced nuclear localization of CLU (nCLU), and that overexpression of nCLU is pro-apoptotic. We show here that CLU time-course accumulation kinetic is different from that of HSP70 in these cells, thus other factor(s) might mediate HSF-1 activation and CLU expression. Sub-lethal heat shock inhibited the secretion of CLU (sCLU), leading to increased cytoplasm accumulation of CLU (cCLU) in association to cell survival. At difference, lethal heat stress caused massive accumulation of pro-apoptotic nCLU in cells dying by caspase-3-dependent apoptosis. Double heat stress (sub-lethal heat shock followed by recovery and lethal stress) induced HSP70 and thermo-tolerance in PNT1A cells, but not in PC-3 cells. In PNT1A cells, CLU secretion was inhibited and cCLU was accumulated, suggesting that cCLU might be pro-survival, while in PC-3 cells accumulation of nCLU was concomitant to caspase-3 induction and PARP activation instead. Thus, CLU expression/sub-cellular localization is strictly related to cell fate. In particular, nCLU and physiological levels of HSP70 affected cell survival in an antagonistic fashion. Prevalence of heat-induced nCLU, not allowing PC-3 cells to cope with heat shock, could be the rational explaining why malignant cells are more sensitive to heat when delivered by minimally invasive procedures for ablation of localized prostate cancer.  相似文献   

11.
A subset of heat shock proteins, HSP90 alpha, HSP90 beta, and a member of the HSP70 family, HSC70, shows enhanced synthesis following mitogenic activation as well as heat shock in human peripheral blood mononuclear cells. In this study, we have examined expression of mRNA for these proteins, including the major 70-kDa heat shock protein, HSP70, in mononuclear cells following either heat shock or mitogenic activation with phytohemagglutinin (PHA), ionomycin, and the phorbol ester, tetradecanoyl phorbol acetate. The results demonstrate that the kinetics of mRNA expression of these four genes generally parallel the kinetics of enhanced protein synthesis seen following either heat shock or mitogen activation and provide clear evidence that mitogen-induced synthesis of HSC70 and HSP90 is due to increased mRNA levels and not simply to enhanced translation of preexisting mRNA. Although most previous studies have focused on cell cycle regulation of HSP70 mRNA, we found that HSP70 mRNA was only slightly and transiently induced by PHA activation, while HSC70 is the predominant 70-kDa heat shock protein homologue induced by mitogens. Similarly, HSP90 alpha appears more inducible by heat shock than mitogens while the opposite is true for HSP90 beta. These results suggest that, although HSP70 and HSC70 have been shown to contain similar promoter regions, additional regulatory mechanisms which result in differential expression to a given stimulus must exist. They clearly demonstrate that human lymphocytes are an important model system for determining mechanisms for regulation of heat shock protein synthesis in unstressed cells. Finally, based on kinetics of mRNA expression, the results are consistent with the hypothesis that HSC70 and HSP90 gene expression are driven by an IL-2/IL-2 receptor-dependent pathway in human T cells.  相似文献   

12.
The conserved eukaryotic protein SGT1 (for Suppressor of G2 allele of skp1) has characteristics of an HSP90 (for heat shock protein 90 kD) cochaperone and in plants regulates hormone responses and Resistance gene-triggered immunity. We affinity-purified SGT1-interacting proteins from Arabidopsis thaliana leaf extracts and identified by mass spectrometry cytosolic heat shock cognate 70 (HSC70) chaperones as the major stable SGT1 interactors. Arabidopsis SGT1a and SGT1b proteins associate with HSC70 in vivo and distribute with HSC70 in the cytosol and nucleus. An intact C-terminal SGT1-specific (SGS) domain that is required for all known SGT1b functions in immunity and development is needed for HSC70 interaction and for the nuclear accumulation of SGT1b. Interaction assays of transiently expressed proteins or their domains in Nicotiana benthamiana point to a role of SGT1 as a HSC70 cofactor. Expression of two HSC70 isoforms is upregulated by pathogen challenge, and while loss of function of individual cytosolic HSC70 genes has no defense phenotype, HSC70-1 overexpression disables resistance to virulent and avirulent pathogens. Moreover, mutations in SGT1b lead to a similar degree of heat shock tolerance as deregulation of HSC70-1. We conclude that an HSC70-SGT1 chaperone complex is important for multiple plant environmental responses and that the evolutionarily conserved SGS domain of SGT1 is a key determinant of the HSC70-SGT1 association.  相似文献   

13.
Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.  相似文献   

14.
The response kinetics of rat C6 glioma cells to heat shock was investigated by means of flow cytometric DNA measurements and western blot analysis of HSP levels. The results showed that the effects on cell cycle progression are dependent on the cell cycle phase at which heat shock is applied, leading to either G1 or G2/M arrest in randomly proliferating cells. When synchronous cultures were stressed during G0 they were arrested with G1 DNA content and showed prolongation of S and G2 phases after release from the block. In proliferating cells, HSC70 and HSP68 were induced during the recovery and reached maximum levels just before cells were released from the cell cycle blocks. Hyperthermic pretreatment induced thermotolerance both in asynchronous and synchronous cultures as evidenced by the reduced arrest of cell cycle progression after the second heat shock. Thermotolerance development was independent of the cell cycle phase. Pre-treated cells already had high HSP levels and did not further increase the amount of HSP after the second treatment. However, as in unprimed cells, HSP reduction coincided with the release from the cell cycle blocks. These results imply that the cell cycle machinery can be rendered thermotolerant by heat shock pretreatment and supports the assumption that HSP70 family members might be involved in thermotolerance development.  相似文献   

15.
Changes in the level of heat shock proteins (HSP) in cells of freshwater protists, amoebae Amoeba proteus and ciliates Paramecium jenningsi, in response to changes in the environmental salinity were investigated. Changes in salinity levels were considered as a stress factor. The immunoblotting method revealed a polypeptide antigen cross-reacting with antibodies against bovine HSP70 in total protein extracts of both intact cells and cells subjected to salinity stress. The same polypeptide antigen was revealed in A. proteus cells subjected to heat shock. Therefore, it may be supposed that the polypeptide revealed after salinity shock is a heat shock protein related to the vertebrate HSP70. Under the impact of stress factor, well acclimated protists mostly spend their own previously accumulated HSP70. A conclusion is made that freshwater protists, living under conditions of increased salinity, appear to be preadapted to changes in environmental factors.  相似文献   

16.
Heat shock protects HCT116 and H460 cells from TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
Heat shock proteins have been shown to protect cells from a variety of stressful conditions, including hyperthermia, oxidative and DNA damage, serum withdrawal, and a variety of chemicals. HSP27, HSP70, and HSP90 have been shown to downregulate different aspects of apoptosome assembly. TRAIL is a member of the TNF family of ligands and is a promising anti-cancer agent. It has been shown to be nontoxic to most normal cell types, while it is a potent killer of many different cancer cells. TRAIL engages both the receptor-mediated (extrinsic) and the mitochondria-initiated (intrinsic) cascades. We tested whether heat shock affects TRAIL-induced apoptosis in different cancer cells. TRAIL treatment does not induce HSP27, HSP70, or HSP90 levels. Nonetheless, when treated with TRAIL for 3 h after release from heat shock, the human colon cancer cell line HCT116 is protected from apoptosis whereas the human colon cancer cell line SW480 is not. This pattern is consistent with the previously observed behavior of HCT116 as Type II cells that depend on mitochondrial signaling and SW480 as Type I, whose TRAIL-induced death is not sensitive to inhibition of caspase 9. Moreover, the failure of heat shock to protect SW480 cells is not due to a lack of HSP70 or HSP90 upregulation. HSP70 and HSP90 are induced 3 h after release from heat shock, whereas HSP27 is induced much later. Thus, the observed protective effect against TRAIL is probably due to the anti-apoptotic effects of HSP70 and HSP90. These results further illustrate interactions between TRAIL receptor signaling and the intrinsic cell death pathway and have practical implications for the potential use of TRAIL and hyperthermia in cancer therapy.  相似文献   

17.
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion.  相似文献   

18.
The major 70 kDa heat shock protein (HSP70), which is scarcely expressed in unstressed rodent cells, was apparently induced by infection with herpes simplex virus (HSV). Infection with HSV types 1 and 2 elevated HSP70 mRNA levels within 4 hr post-infection. HSP70 synthesis and accumulation increased in HSV-infected cells. Irradiation of HSV with UV-light abolished the ability to induce HSP70 mRNA. Inhibitors of viral DNA synthesis did not affect the induction of HSP70 in infected cells. Protein synthesis within 2 hr after infection was necessary for HSP70 induction.  相似文献   

19.
20.
Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号