首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calmodulin, a calcium-binding protein with no known enzymatic activity but multiple, in vitro effector activities, has been purified to apparent homogeneity from the unicellular green alga Chlamydomonas reinhardtii and compared to calmodulin from vertebrates and higher plants. Chlamydomonas calmodulin was characterized in terms of electrophoretic mobility, amino acid composition, limited amino acid sequence analysis, immunoreactivity, and phosphodiesterase activation. Chlamydomonas calmodulin has two histidine residues similar to calmodulin from the protozoan Tetrahymena. However, unlike the protozoan calmodulin, only one of the histidinyl residues of Chlamydomonas calmodulin is found in the COOH-terminal third of the molecule. Chlamydomonas calmodulin lacks trimethyllysine but does have a lysine residue at the amino acid sequence position corresponding to the trimethyllysine residue in bovine brain and spinach calmodulins. The lack of this post-translational modification does not prevent Chlamydomonas calmodulin from quantitatively activating bovine brain phosphodiesterase. These studies also demonstrate that this unique calmodulin from a phylogenetically earlier eukaryote may be as similar to vertebrate calmodulin as it is to higher plant calmodulins, and suggest that Chlamydomonas calmodulin may more closely approximate the characteristics of a putative precursor of the calmodulin family than any calmodulin characterized to date.  相似文献   

2.
Ca2+/calmodulin dependent cyclic nucleotide phosphodiesterase, from the bovine heart and brain, purified by monoclonal antibody chromatography were tested with respect to activation by oncomodulin. The heart and brain enzymes which have previously been shown to have slightly different electrophoretic mobilities (1), were found to also differ in the oncomodulin dose-dependent activation of cAMP hydrolysis. Oncomodulin was shown to activate the heart enzyme to the same extent as calmodulin. However, this study indicates that the heart phosphodiesterase has approximately 25-fold higher affinity for oncomodulin than the brain enzyme. The oncomodulin concentration required for the half-maximal activation of the heart phosphodiesterase was estimated to be 2 X 10(-7)M. In addition, the possibility of the observed activation by oncomodulin being due to calmodulin contamination can be ruled out as the oncomodulin activation profiles were unaltered subsequent to chromatography on organomercurial agarose and the activation by oncomodulin could not be reversed by anti-calmodulin IgG.  相似文献   

3.
Calmodulin was purified from human brain by ammonium sulfate precipitation, gel filtration, and anion exchange chromatography. The purified calmodulin was homogenous when evaluated by polyacrylamide gel electrophoresis. The biological and physicochemical properties of human brain calmodulin such as the ability to activate calmodulin-deficient bovine phosphodiesterase, molecular weight, and amino acid composition were almost the same as bovine brain calmodulin.  相似文献   

4.
The bovine heart calmodulin-dependent phosphodiesterase can be phosphorylated by cAMP-dependent protein kinase, resulting in a decrease in the enzyme's affinity for calmodulin. The phosphorylation of calmodulin-dependent phosphodiesterase is blocked by Ca2+ and calmodulin and reversed by the calmodulin-dependent phosphatase. The dephosphorylation is accompanied by an increase in the affinity of the phosphodiesterase for calmodulin. The CaM-dependent phosphodiesterase isozymes of heart and brain are regulated by calmodulin, but the affinity for calmodulin are different. Furthermore, the bovine heart CaM-dependent phosphodiesterase isozyme in stimulated at much lower Ca2+ concentration than the bovine brain isozymes. Results from this study suggest that the activity of this phosphodiesterase is precisely regulated by cross-talk between Ca2+ and cAMP signalling pathways.  相似文献   

5.
A protein-activator of bovine cyclic nucleotide phosphodiesterase from the water mold Achlya ambisexualis has been affinity-purified to apparent electrophoretic homogeneity. The heat-stable protein is similar in amino acid content and electrophoretic mobility on SDS acrylamide gels, to bovine brain calmodulin. It also cross-reacts with antibodies raised to the bovine protein. Achlya calmodulin activates PDE increasing its activity up to 9-fold in a Ca2+-dependent manner. The mold protein appears unusual in that its tyrosine fluorescence is unaltered by Ca2+ or by EGTA.  相似文献   

6.
Calmodulin was purified from the eukaryotic microorganism Dictyostelium discoideum and characterized in terms of its nearly complete primary structure and quantitative activator activity. The strategy for amino acid sequence analysis took advantage of the highly conserved structure of calmodulin and employed a new procedure for limited cleavage of calmodulin that uses a protease from mouse submaxillary gland. Fourteen amino acid sequence differences between Dictyostelium and bovine calmodulin were identified unequivocally, as well as an unmethylated lysine at residue 115 instead of N epsilon, N epsilon, N epsilon-trimethyllysine. Seven of the amino acid substitutions in Dictyostelium calmodulin are novel in that the residues at these positions are invariant in all calmodulin sequences previously examined, most notably an additional residue at the carboxy terminus. Comparison of the Dictyostelium calmodulin sequence with other calmodulin sequences shows that the region with the greatest extended sequence identity includes parts of the first and second structural domains and the interdomain region between domains 1 and 2. Dictyostelium calmodulin activated bovine brain cyclic nucleotide phosphodiesterase in a manner indistinguishable from that of bovine brain calmodulin. However, Dictyostelium calmodulin activated pea NAD kinase to a maximal level 4.6-fold greater than that produced by bovine brain calmodulin. This functional difference demonstrates the potential biological importance of the limited number of amino acid sequence differences between Dictyostelium calmodulin and other calmodulins and provides further insight into the structure, function, and evolution of the calmodulin family of proteins.  相似文献   

7.
Characterization of a novel calmodulin from Dictyostelium discoideum   总被引:7,自引:0,他引:7  
We have purified calmodulin from the eukaryotic microorganism Dictyostelium discoideum (Clarke, M., Bazari, W. L., and Kayman, S. C. (1980) J. Bacteriol. 141, 397-400) and have compared it to calmodulin purified from bovine brain. The two proteins behaved almost identically during fractionation on ion exchange and gel filtration columns and on isoelectric focusing gels. Dictyostelium calmodulin had one-third the specific activity of brain calmodulin in the Ca2+-dependent activation of brain cyclic nucleotide phosphodiesterase; this activation was inhibited for both proteins by 25 microM trifluoperazine. Dictyostelium calmodulin also activated erythrocyte (Ca2+ + Mg2+)-ATPase and interacted with the inhibitory subunit of skeletal muscle troponin. Competition radioimmune assays showed that Dictyostelium calmodulin could compete with brain calmodulin for antibodies to brain calmodulin. These similarities indicate a close relationship between Dictyostelium and brain calmodulin and suggest that the functional capabilities of the protein have been conserved even among evolutionarily distant species. However, substantial differences in primary structure were detected by amino acid analyses and peptide mapping. Most interesting is the lack of trimethyllysine in Dictyostelium calmodulin. This unusual amino acid, which is commonly found in calmodulins, is therefore not essential for interaction between calmodulin and the calmodulin-regulated proteins tested here.  相似文献   

8.
The purification and identification of calmodulin from human placenta   总被引:1,自引:0,他引:1  
A protein which showed similarity to bovine brain calmodulin in electrophoretic mobilities on polyacrylamide gels in the presence of 40% glycerol (pH 8.6) and 0.1% sodium dodecyl sulfate (pH 7.2) was isolated from human placenta. Its final yield was approx. 4 mg per kg human placenta. The placenta protein was similar to bovine brain calmodulin in stimulating bovine brain calmodulin-deficient cyclic nucleotide phosphodiesterase in the presence of calcium. However, its stimulating activity was eliminated by ethyleneglycol-bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) or trifluoperazine. In addition, there is a close resemblance in amino acid composition between the placental protein and bovine brain calmodulin. These results indicate that calmodulin is present in human placenta.  相似文献   

9.
The binding of calmodulin to myelin basic protein and histone H2B.   总被引:4,自引:1,他引:3       下载免费PDF全文
1. A calmodulin-binding protein of apparent mol.wt. 19 000 has been purified from chicken gizzard. Similar proteins have been isolated from bovine uterus, rabbit skeletal muscle and rabbit liver. 2. These proteins migrated as an equimolar complex with bovine brain calmodulin on electroporesis on polyacrylamide gels in the presence of Ca2+ and 6M-urea. The complex was dissociated in the presence of EGTA. 2. The chicken gizzard calmodulin-binding protein has been shown to be identical with chicken erythrocyte histone H2B on the basis of partial amino acid sequence determination. 4. The calmodulin-binding proteins of apparent mol.wt. 22 000 isolated previously from bovine brain [Grand & Perry (1979) Biochem. J. 183, 285-295] has been shown, on the basis of partial amino-acid-sequence determination, to be identical with myelin basic protein. 5. The activation of bovine brain phosphodiesterase by calmodulin is inhibited by excess bovine uterus calmodulin-binding protein (histone H2B). 6. The phosphorylation of myelin basic protein by phosphorylase kinase is partially inhibited, whereas the phosphorylation of uterus calmodulin-binding protein (histone H2B) is unaffected by calmodulin or troponin C. 7. The subcellular distribution of myelin basic protein and calmodulin suggests that the two proteins do not exist as a complex in vivo.  相似文献   

10.
An enzymatic assay for calmodulins based on plant NAD kinase activity   总被引:6,自引:0,他引:6  
NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca2+-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K0.5) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The K0.5's ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K0.5's for the activation of Ca2+-ATPase ranged from 36.3 ng/ml for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca2+. Palmitic acid had a slightly stimulatory effect in the presence of Ca2+ (10% of maximum), but no effect in the absence of Ca2+. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures.  相似文献   

11.
A calcium sensitive phosphodiesterase (PDE) activated by an endogenous calmodulin was identified in the cytosolic fraction of porcine renal medulla. The PDE and calmodulin were separated from each other by DEAE-cellulose column chromatography. Calmodulin was purified from a heat-treated supernatant by column chromatography with DEAE-cellulose and hydroxylapatite. The purified renal calmodulin has a molecular weight of 17,500, is heatstable, and has a pI of 4.2. Activation of the renal PDE by calmodulin was immediate and stoichiometric. The renal calmodulin and PDE cross react with bovine brain calmodulin and PDE, indicating a lack of tissue and species specificity. Thus, renal calmodulin is very similar to bovine brain calmodulin. However, renal calmodulin did not affect detergent-solubilized or membrane-bound renal adenylate cyclase or the antidiuretic hormone-stimulated activity of the enzyme. These results suggest that calmodulin may function in the renal medulla to regulate cAMP levels by stimulation of PDE but not adenylate cyclase. However, the ubiquitous distribution of calmodulin in eukaryotic cells and its effects on a number of other enzymes allow the possibility that calmodulin may have a role in renal function other than cAMP metabolism.  相似文献   

12.
A calmodulin-stimulated form of cyclic nucleotide phosphodiesterase from bovine brain has been extensively purified (1000-fold). Its specific activity is approximately 4 mumol min-1 (mg of protein)-1 when 1 microM cGMP is used as the substrate. This form of calmodulin-sensitive phosphodiesterase activity differs from those purified previously by showing a very low maximum hydrolytic rate for cAMP vs. cGMP. The purification procedure utilizing ammonium sulfate precipitation, ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephacryl S-300, isoelectric focusing, and affinity chromatography on calmodulin-Sepharose and Cibacron blue-agarose results in a protein with greater than 80% purity with 1% yield. Kinetics of cGMP and cAMP hydrolysis are linear with Km values of 5 and 15 microM, respectively. Addition of calcium and calmodulin reduces the apparent Km for cGMP to 2-3 microM and increases the Vmax by 10-fold. cAMP hydrolysis shows a similar increase in Vmax with an apparent doubling of Km. Both substrates show competitive inhibition with Ki's close to their relative Km values. Highly purified preparations of the enzyme contain a major protein band of Mr 74 000 that best correlates with enzyme activity. Proteins of Mr 59 000 and Mr 46 000 contaminate some preparations to varying degrees. An apparent molecular weight of 150 000 by gel filtration suggests that the enzyme exists as a dimer of Mr 74 000 subunits. Phosphorylation of the enzyme preparation by cAMP-dependent protein kinase did not alter the kinetic or calmodulin binding properties of the enzyme. Western immunoblot analysis indicated no cross-reactivity between the bovine brain calmodulin-stimulated gGMP phosphodiesterase and the Mr 60 000 high-affinity cAMP phosphodiesterase present in most mammalian tissues.  相似文献   

13.
We have isolated two Ca2+-binding proteins from squid optic lobes, each of which is also able to bind phenothiazines in a Ca2+-dependent manner. These proteins have each been purified and partly characterized. One of the proteins corresponds to calmodulin, in that it has a similar amino acid content to bovine brain calmodulin, including a single residue of trimethyl-lysine, it co-migrates with bovine calmodulin both on alkaline-urea- and on sodium dodecyl sulphate (SDS)/polyacrylamide-gel electrophoresis, and will activate calmodulin-dependent phosphodiesterase. The second protein has the same subunit molecular weight as calmodulin, as determined by SDS/polyacrylamide-gel electrophoresis, Mr 17 000, but migrates more slowly than this protein on alkaline-urea-gel electrophoresis. It has an amino acid composition distinct from calmodulin, containing no trimethyl-lysine, its CNBr fragments migrate on alkaline gels in a pattern distinct from those of calmodulin and it shows little ability to activate phosphodiesterase. The u.v.-absorption spectra of the proteins indicate the absence of tryptophan and the presence of a high phenylalanine/tyrosine ratio in each. Both proteins also bind 3-4 calcium ions/mol at 0.1 mM-free Ca2+ and each binds chlorpromazine in a Ca2+-dependent manner.  相似文献   

14.
Abstract: Calmodulin was isolated as an electrophoretically homogeneous protein from bovine posterior pituitary glands. The yield indicated that this gland is a particularly rich source. Purified bovine posterior pituitary calmodulin and bovine brain calmodulin had identical electrophoretic mobilities on 10% and 12% polyacrylamide gels. The protein was further identified by molecular weight determination and by amino acid analysis which showed that it contained trimethyllysine, one residue per molecule. Bovine posterior pituitary calmodulin was found to activate a preparation of calmodulin-deficient phosphodiesterase from bovine heart. In addition, pituitary calmodulin stimulated Ca2++ Mg2+-ATPase activity associated with a purified nerve ending plasma membrane fraction. This dependence could only be demonstrated after successive washing of the membranes with EGTA buffers, a procedure designed to remove endogenous calmodulin.  相似文献   

15.
16.
A calcium binding protein from Drosophila melanogaster has been isolated and characterized. This protein shows several analogies with pig brain calmodulin in its molecular weight, isoelectric point, peptide maps, calcium binding properties, and ability to activate cyclic AMP phosphodiesterase. However, some differences were observed; the most remarkable one is the presence of tryptophan, an amino acid which is absent from all the calmodulins analyzed previously.  相似文献   

17.
Tetrahymena calcium-binding protein is indeed a calmodulin   总被引:1,自引:0,他引:1  
We previously isolated a Ca2+-binding protein from a ciliate, Tetrahymena, and designated it as TCBP (Tetrahymena Ca2+-binding protein). The present paper reports that TCBP, which has two high affinity Ca2+-binding sites (Kd=4.6 X 10(-6) M), could activate porcine brain cyclic nucleotide phosphodiesterase at a concentration of over 10(-6) M free Ca2+, with the same mode of activation as that of authentic (porcine brain) calmodulin. In addition, the amino acid composition of TCBP was essentially the same as that of brain calmodulin. Therefore, we conclude that TCBP as an activator of Tetrahymena guanylate cyclase is indeed a calmodulin.  相似文献   

18.
A calmodulin (CaM)-dependent phosphodiesterase activity that hydrolyzes both cGMP and cAMP was observed in anion exchange high performance liquid chromatography (HPLC) profiles from phytohemagglutinin-stimulated mononuclear cells but not in profiles from unstimulated cells. A single polypeptide was detected by an antibody to the calmodulin-dependent phosphodiesterases on a Western blot of homogenates of stimulated mononuclear cells. The phosphodiesterase activity was immunoadsorbed in a calcium-dependent manner by an antibody to calmodulin but not by an antibody to the 61-kDa bovine brain phosphodiesterase. The mononuclear cell enzyme eluted from the HPLC column in the same fractions as the 63-kDa calmodulin-dependent isozyme from bovine brain and appeared to have the same subunit molecular weight when probed on a Western blot. The electrophoretic mobility of proteolytic fragments derived from the mononuclear cell phosphodiesterase were identical to those from the 63-kDa brain isozyme. The enzyme could be detected in mononuclear cells by activity assays and on a Western blot 14 h after stimulation with mitogen. The enzyme remained elevated for at least 100 h after stimulation. A dose-response experiment with phytohemagglutinin demonstrated that similar concentrations of mitogen could induce both mitogenesis and the phosphodiesterase. The induction of this enzyme requires mRNA as well as protein synthesis but not DNA synthesis. An enzyme similar to the 63-kDa phosphodiesterase found in brain seems to demonstrate a regulatory interface for the metabolism of calcium and cyclic nucleotides during lymphocyte mitogenesis.  相似文献   

19.
Calmodulin from the yeast Saccharomyces cerevisiae was purified to complete homogeneity by hydrophobic interaction chromatography and HPLC gel filtration. The biochemical properties of the purified protein as calmodulin were examined under various criteria and its similarity and dissimilarity to other calmodulins have been described. Like other calmodulins, yeast calmodulin activated bovine phosphodiesterase and pea NAD kinase in a Ca2+-dependent manner, but its concentration for half-maximal activation was 8-10 times that of bovine calmodulin. The amino acid composition of yeast calmodulin was different from those of calmodulins from other lower eukaryotes in that it contained no tyrosine, but more leucine and had a high ratio of serine to threonine. Yeast calmodulin did not contain tryptophanyl or tyrosyl residues, so its ultraviolet spectrum reflected the absorbance of phenylalanyl residues, and had a molar absorption coefficient at 259 nm of 1900 M-1 cm-1. Ca2+ ions changed the secondary structure of yeast calmodulin, causing a 3% decrease in the alpha-helical content, unlike its effect on other calmodulins. Antibody against yeast calmodulin did not cross-react with bovine calmodulin, and antibody against bovine calmodulin did not cross-react with yeast calmodulin, presumably due to differences in the amino acid sequences of the antigenic sites. It is concluded that the molecular structure of yeast calmodulin differs from those of calmodulins from other sources, but that its Ca2+-dependent regulatory functions are highly conserved and essentially similar to those of calmodulins of higher eukaryotes.  相似文献   

20.
The cytosol fraction of an extract of Xenopus laevis ovaries contains a protein inhibitor that can specifically block the activation of calmodulin-sensitive cyclic nucleotide phosphodiesterase (PDE I) found in that tissue. This inhibitor was purified by DEAE-cellulose chromatography, gel filtration on Sephacryl S-200, and affinity chromatography on calmodulin-Sepharose. It has a molecular weight of approximately 90,000, and is heat-labile and susceptible to inactivation by chymotrypsin. The inhibitor blocks calmodulin activation of cyclic nucleotide phosphodiesterases from amphibian ovary and bovine brain and of the myosin light chain kinase from rabbit smooth muscle, but does not affect the activity of a calmodulin-insensitive cyclic nucleotide phosphodiesterase. The inhibitor not only affects the activation of Xenopus PDE I and of the bovine brain phosphodiesterase by calmodulin, but also inhibits the stimulation of these enzymes by lysophosphatidylcholine. The inhibitor also acts on PDE I activated by partial tryptic proteolysis, but the enzyme fully activated by trypsin is only slightly susceptible to inhibition by this protein. The inhibition of PDE I activation caused by this ovarian factor can be reversed by adding excess amounts of calmodulin or lysophosphatidylcholine. The presence of this inhibitor provides a possible explanation for the previously observed inactivity of PDE I in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号