首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We studied competitive interactions among three species (Corynephorus canescens, Hieracium pilosella and Carex arenaria) of different early successional stages on sand dunes. Our study focused on the influence of competition and water availability on biomass allocation patterns and the plasticity of root responses. Plants were grown for one growing season in a simple additive (target–neighbour) design under low or ambient water supply. Overall competition intensity (e.g., above–and below–ground), as well as root competition alone, were compared using control plants grown without competitors. Our results show high competition intensity leading to an average target plant biomass reduction of 56 relative to controls. Competition was mostly below–ground. With increasing water availability, the competitive effect of H. pilosella on both of the other species decreased significantly. All other tested species combinations were not influenced by water availability. Soil moisture seemed to be a key factor determining the plasticity of root responses. Under limited water availability, strong competitors caused a significant decrease of response ratio (lnRR) based on root: shoot ratios for H. pilosella and C. arenaria and a decrease in lnRR based on specific root length (SRL) for C. arenaria. Under sufficient water supply, however, there was no significant effect of competition on root: shoot ratios for any of the species and only C. arenaria in competition with C. canescens showed a lower lnRR based on SRL. These water–related, species–specific changes of root morphology and allocation patterns may point to an adaptive response to competition.  相似文献   

2.
Han Olff 《Oecologia》1992,89(3):412-421
Summary Recent discussions on determinants of competitive success during succession require the study of the combined effect of light and nutrient availability on growth and allocation. These effects can be used to predict the outcome of competition at changing resource availabilities. This work is part of a study on the successional sequence in permanent grassland starting after fertilizer application is stopped, but with continued mowing, in order to restore former species-rich communities. This yields a successional sequence which proceeds from grasslands with a high nutrient availability and a closed canopy, to grasslands with a low nutrient availability and an open canopy. If allocation is related to competitive ability, species from the productive stages would be expected to allocate more biomass and nitrogen to leaves, which could make them better competitors for light, while species from the unproductive stages would allocate more biomass to roots, which could make them better nutrient competitors. This study reports on growth, specific leaf area (SLA), vertical display of leaves, and allocation of biomass and nitrogen of six grassland species from this successional sequence at 16 combinations of light and nutrient supply. Species from the poorer successional stages reached a lower final dry weight than species from the richer stages, over all treatment combinations. The experimental design made it possible to test for unique effects of the resource ratio effect of light and nutrients on allocation characteristics. This resource-ratio effect was defined as the ratio light intensity/(light intensity + nutrient supply rate), using standardized levels for the treatments. The within-species variation (plasticity) in both allocation of dry matter and nitrogen was linearly related to this resource-ratio effect. Some interspecific differences in this relationship were found which could be related to the position of the species along the successional gradient. However, the range of plasticity in allocation pattern expressed within each species was much larger than the differences between species. It was concluded that allocation differences between these grassland species are relatively unimportant, given the large amount of plasticity in these traits. Interspecific differences in SLA and vertical stature seemed to be more important in explaining the position of species along the successional gradient.  相似文献   

3.
植物根系养分捕获塑性与根竞争   总被引:7,自引:0,他引:7       下载免费PDF全文
王鹏  牟溥  李云斌 《植物生态学报》2012,36(11):1184-1196
为了更有效地从土壤中获取养分, 植物根系在长期的进化与适应中产生了一系列塑性反应, 以响应自然界中广泛存在的时空异质性。同时, 植物根系的养分吸收也要面对来自种内和种间的竞争。多种因素都会影响植物根竞争的结果, 包括养分条件、养分异质性的程度、根系塑性的表达等。竞争会改变植物根系的塑性反应, 比如影响植物根系的空间分布; 植物根系塑性程度差异也会影响竞争。已有研究发现根系具有高形态塑性和高生理塑性的植物在长期竞争过程中会占据优势。由于不同物种根系塑性的差异, 固定的对待竞争的反应模式在植物根系中可能并不存在, 其响应随竞争物种以及土壤环境因素的变化而变化。此外, 随着时间变化, 根系塑性的反应及其重要性也会随之改变。植物对竞争的反应可能与竞争个体之间的亲缘关系有关, 有研究表明亲缘关系近的植物可能倾向于减小彼此之间的竞争。根竞争对植物的生存非常重要, 但目前还没有研究综合考虑植物的各种塑性在根竞争中的作用。另外根竞争对群落结构的影响尚待深入的研究。  相似文献   

4.
Better managing crop : weed competition in cropping systems while reducing both nitrogen and herbicide inputs is a real challenge that requires a better understanding of crop and weed root architecture in relation to soil‐nitrogen availability. An original approach was used which considered the parameters of a simulation model of root architecture as traits to analyse (a) the interspecific diversity of root system architecture, and (b) its response to soil‐nitrogen availability. Two greenhouse experiments were conducted using three crop and nine weed species grown at two contrasted concentrations of soil‐nitrogen availability. Plant traits were measured to characterise both overall plant growth and root architecture, with a focus on primary root emergence, root elongation and branching. The studied root traits varied among species (from a twofold to a fourfold factor, depending on the trait), validating their use as indicators to analyse the interspecific variability of root architecture. The largest interspecies differences were for two traits: ‘maximal apical root diameter’ and ‘interbranch distance’ (distance between two successive laterals on the same root). Conversely, most of the studied root traits varied little with soil‐nitrogen availability (from no variation to a 1.1‐fold factor, depending on the trait) even though soil‐nitrogen availability varied with a 17‐fold factor and impacted the overall shoot and root biomass. So, the root traits used in this article are stable whatever soil‐nitrogen availability. As they reflect processes underlying root system architecture, this low effect of nitrogen suggests that the rules governing root architecture are little affected by plant nitrogen status and soil‐nitrogen availability. We propose that the determinants of differences in root system architecture between soils with contrasted nitrogen availability mainly originate from differences in the amount of carbon allocated to and within the root system. Characterising each plant species by a combination of root traits gave insights regarding the potential species competitive ability for soil resources in agroecosystems.  相似文献   

5.
土壤养分空间异质性与植物根系的觅食反应   总被引:41,自引:5,他引:41  
植物在长期进化过程中,为了最大限度地获取土壤资源,对养分的空间异质性产生各种可塑性反应.包括形态可塑性、生理可塑性、菌根可塑性等.许多植物种的根系在养分丰富的斑块中大量增生,增生程度种间差异较大,并受斑块属性(斑块大小、养分浓度)、营养元素种类和养分总体供应状况的影响.植物还通过调整富养斑块中细根的直径、分枝角、节问距以及空间构型来实现斑块养分的高效利用.根系的生理可塑性及菌根可塑性可能在一定程度上影响其形态可塑性.生理可塑性表现为处于不同养分斑块上的根系迅速调整其养分吸收速率,从而增加单位根系的养分吸收,对在时间上和空间上变化频繁的空间异质性土壤养分的利用具有重要意义,可在一定程度上弥补根系增生反应的不足.菌根可塑性目前研究较少,一些植物种的菌根代替细根实现在富养斑块中的增生.菌根增生的碳投入养分吸收效率较高、根系增生对增加养分吸收的作用较复杂,取决于养分离子在土壤中的移动性能以及是否存在竞争植物;对植物生长(竞争能力)的作用因种而异,一些敏感种由此获得生长效益,而其它一些植物种受影响较小.植物个体对土壤养分空间异质性反应能力和生长差异,影响其在群落中的地位和命运,最终影响群落组成及其结构.  相似文献   

6.
We investigated how shoot and root allocation in plants responds to increasing levels of competitive stress at different levels of soil fertility. In addition, we analyzed whether different responses were due to adaptive plasticity or should be attributed to ontogenetic drift. Plantago lanceolata plants were grown during 18 weeks at five plant densities and four nutrient supply levels in pots in the greenhouse. Thereafter root and shoot biomass was measured. There were clear negative effects of increasing plant densities on plant weights revealing strong intraspecific competition. At the lower N-treatments, the proportional allocation to root mass increased with increasing competitive stress, indicating the important role of belowground competition. At the higher N-supply rate, the relationship between competitive stress and shoot to root ratio was neutral. These responses could not be attributed to ontogenetic drift, but could only be explained by assuming adaptive plasticity. It was concluded that at lower N-supplies belowground competition dominates and leads to increased allocation to roots, while at the higher N-supply competition for soil resources and light had balanced impacts on shoot and root allocation. An alternative hypothesis explaining the observed pattern is that light competition has far less pronounced impacts on root–shoot allocation than nutrient deprival.  相似文献   

7.
《植物生态学报》2016,40(7):679
Aims Soil nitrogen (N) availability is the most limiting factor for terrestrial plant growth, and global N deposition can improve the soil N availability. Fast growth may be a general trait of successful invaders, so learning how N addition affected the growth and competitive ability of three Centaurea stoebe populations is conductive to forecasting the plant invasion risk under N deposition. Methods We conducted an experiment simulating N deposition at Chengdu, in which three populations from the invasive forb C. stoebe and one native species Poa pratensis were subjected to two treatments: N addition and ambient. In our study, C. stoebe populations and P. pratensis were planted alone or together, and we determined plant height, leaf area and biomass. Important findings In the absence of competition, N addition promoted the growth of C. stoebe populations, thereby improving their invasive potential to a certain extent. So under the condition of competition, we found that N addition obviously enhanced the competitive effects of C. stoebe on P. pratensis, particularly interspecific root competition. The competitive ability of different populations performed similarly in response to N addition. These results preliminarily suggest that N deposition may increase the potential invasion risks of C. stoebe populations by improving their competitive ability.  相似文献   

8.
为了解高寒植物幼苗对生境资源异质性的适应策略,以高寒草甸中常见的3种草本植物大耳叶风毛菊(Saussurea macrota)、甘西鼠尾草(Salvia przewalskii)和千里光(Senecio scandens)为材料,比较研究了这3种植物幼苗对不同光照和养分资源的响应。结果表明:光照和养分异质性显著影响了3种植物幼苗的性状特征和生物量分配,并存在一定的交互影响。随着光照的降低,3个物种的幼苗的生物量和根分配呈现降低趋势,但是其株高、比叶面积、叶分配、茎分配却逐渐升高。在低养分条件下,3个物种幼苗的总生物量、株高、比叶面积和叶分配均降低,而根分配均却显著增加。对于光照和养分资源异质性而言,光照异质性对高寒植物生物量分配和性状特征的改变具有更大的影响。喜阴物种大耳叶风毛菊和喜光物种甘西鼠尾草比中性生境物种千里光表现出了较大的性状特征和生物量分配的可塑性指数。  相似文献   

9.
The role of phenotypic plasticity in plant invasions is among the most often discussed relationships in invasion ecology. However, despite the large number of studies on this topic, there is little consistency. Reconsideration of the role of plasticity by distinguishing two substantially distinct trait-groups, performance traits (contributing directly to fitness) and functional traits (influencing fitness indirectly), could form a more operative framework for comparative studies. In the current study we expect that invasive species benefit from being plastic in functional traits, which allows them to maintain a more constant performance across different environmental conditions compared to non-invasive alien species. We compared invasive and naturalized non-invasive alien plant species by their germination (20 species), their vegetative (10 species) and their reproductive (four species) responses to three different levels of water, light and nutrient availability in a common garden experiment. Used traits were classified into performance (germination ratio, total biomass, seed number) and functional traits (time to germination, root:shoot ratio, specific leaf area, reproductive allocation). We found that invasive and non-invasive species responded similarly to environmental factors, except for example that invasive species germinated earlier with decreasing light conditions or, surprisingly, non-invasive species reacted more intensely to increased nitrogen availability by having a superior ability to achieve greater biomass. The two groups were equally plastic in all the germination and vegetative traits measured but the reproductive traits, since higher plasticity in relative reproductive allocation and higher constancy in reproductive performance showed a pronounced relation with invasiveness.  相似文献   

10.
? Premise of study: Functional trait comparisons provide a framework with which to assess invasion and invasion resistance. However, recent studies have found evidence for both trait convergence and divergence among coexisting dominant native and invasive species. Few studies have assessed how multiple stresses constrain trait values and plasticity, and no study has included direct measurements of nutrient conservation traits, which are critical to plants growing in low-resource environments. ? Methods: We evaluated how nutrient and water stresses affect growth and allocation, water potential and gas exchange, and nitrogen (N) allocation and use traits among a suite of six codominant species from the Intermountain West to determine trait values and plasticity. In the greenhouse, we grew our species under a full factorial combination of high and low N and water availability. We measured relative growth rate (RGR) and its components, total biomass, biomass allocation, midday water potential, photosynthetic rate, water-use efficiency (WUE), green leaf N, senesced leaf N, total N pools, N productivity, and photosynthetic N use efficiency. ? Key results: Overall, soil water availability constrained plant responses to N availability and was the major driver of plant trait variation in our analysis. Drought decreased plant biomass and RGR, limited N conservation, and led to increased WUE. For most traits, native and nonnative species were similarly plastic. ? Conclusions: Our data suggest native and invasive biomass dominants may converge on functionally similar traits and demonstrate comparable ability to respond to changes in resource availability.  相似文献   

11.
Green cabbage (Brassica campestris, leafy variety) and turnip (Brassica campestris var. rapifera, rooty variety) were grown in both monocultures and mixtures at three nutrient levels to investigate their responses to nutrient availability with respect to biomass allocation, morphological plasticity and competitive ability. Their allocation parameters and leaf morphological traits were affected by both nutrient availability and developmental stage. Both of the varieties had a smaller biomass allocation to leaf blades, but a greater allocation to petioles at high nutrient levels. Root:shoot ratio (RSR) of green cabbage decreased with increasing nutrient availability, whereas that of turnip increased. Turnip had a smaller leaf blade weight ratio (LBWR) than cabbage, being compensated for by larger leaf area ratio (LAR) and specific leaf area (SLA). Leaf area ratio and SLA of both the varieties increased with increasing nutrient availability as did their mean dry weights. The mean dry weight of turnip was slightly greater than that of green cabbage in their respective monocultures, while that of green cabbage was greater than that of turnip in their 1:1 mixture. Therefore, green cabbage, having inherently greater biomass allocation to leaves, was generally more competitive than turnip with more biomass allocation to roots, especially at higher nutrient levels. However, within a variety, morphological plasticity (variation in LAR and SLA) was more important than the plasticity in biomass allocation (e.g. variation in RSR and LBWR) in determining competitive ability. The implication of our results is that competition models based on biomass allocation pattern alone may fail to predict competitive outcomes and that such models should also take morphological plasticity into full account.  相似文献   

12.
Changes in plant biomass allocation in response to varying resource availabilities may result from ontogenetic drift caused by allometric growth (i.e., apparent plasticity), a true adjustment of ontogenetic trajectories (true plasticity) or both (complex plasticity). Given that the root allocation of annual species usually decreases during the growth, the developmentally explicit model predicts that annual herbs will exhibit true plasticity in root allocation under above-ground resource limitation and apparent plasticity for moderate stress of below-ground resource. For perennial species, the root allocation of which increases during growth, the reverse patterns would be expected. In this study, we tested the developmentally explicit model with a perennial weed, Alternanthera philoxeroides (Mart.) Griseb. We report its adaptive changes and ontogenetic drift of root allocation in response to different resource levels (i.e., light, water and nutrient availability) by comparing root allocation on both an age and a size basis. The root allocation of A. philoxeroides increased with the size (i.e., ontogenetic drift) during the growth, and exhibited significant changes in response to different resource availabilities. Furthermore, the root allocation in response to water or nutrient availability exhibited typical complex plasticity, while the light stress only slowed down the growth, with the ontogenetic trajectory unchanged (apparent plasticity). The contrasting responses to above-ground and below-ground stresses were consistent with the prediction of the developmentally explicit model.  相似文献   

13.

Background and Aims

Nitrogen availability varies greatly over short time scales. This requires that a well-adapted plant modify its phenotype by an appropriate amount and at a certain speed in order to maximize growth and fitness. To determine how plastic ontogenetic changes in each trait interact and whether or not these changes are likely to maximize growth, ontogenetic changes in relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA) and root weight ratio (RWR), before and after a decrease in nitrogen supply, were studied in 14 herbaceous species.

Methods

Forty-four plants of each species were grown in hydroponic culture under controlled conditions in a control treatment where the supply of nitrogen remained constant at 1 mm, and in a stress treatment where the nitrogen supply was abruptly decreased from 1 to 0·01 mm during the growth period.

Key Results and Conclusions

In the treatment series, and in comparison with the control, NAR and RGR decreased, RWR increased, and SLA did not change except for the timing of ontogenetic change. Species having greater increases in the maximum rate of change in RWR also had smaller reductions in RGR; plasticity in RWR is therefore adaptive. In contrast, species which showed a greater decrease in NAR showed stronger reductions in RGR; plasticity in NAR is therefore not adaptive. Plasticity in RGR was not related to plasticity in SLA. There were no significant relationships among the plasticities in NAR, RWR or SLA. Potentially fast-growing species experienced larger reductions in RGR following the nitrogen reduction. These results suggest that competitive responses to interspecific competition for nitrogen might be positively correlated with the plasticity in the maximum rate of change in RWR in response to a reduction in nitrogen supply.  相似文献   

14.
The growth, morphology and biomass allocation of 11 liana species (six light-demanding and five shade-tolerant) were investigated by growing plants in three contrasting light environments (i.e., field, forest edge and forest interior). Our objectives were to determine: (1) changes in plant traits at the species level; and (2) differences in light-demanding and shade-tolerant species in response to altered light environment. We found that all seedlings of liana species increased in total biomass, total leaf area, relative growth rate (RGR), net assimilation rate (NAR), height, basal diameter, root length, leaf number, root mass/total plant mass (RMR) and root-to-shoot dry biomass (R/S ratio), and decreased in leaf area ratio (LAR), specific leaf area (SLA), leaf size, stem mass-to-total plant mass ratio (SMR) and leaf mass-to-total plant mass ratio (LMR) with increasing light availability. Under the three light environments, the two types of species differed significantly in total biomass, total leaf area, RGR, NAR, LAR, SLA and leaf number, and not in leaf area. Only light-demanding species differed significantly in height, root length, basal diameter, RMR, SMR, LMR and R/S ratio. The mean plasticity index of growth and biomass allocation were relatively higher than the morphological variables, with significant differences between the two groups. Our results showed that liana species respond differently to changing light environments and that light-demanding species exhibit higher plasticity. Such differences may affect the relative success of liana species in forest dynamics.  相似文献   

15.
Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a higher plasticity to nitrogen addition, and potentially an advantage when adapting to higher concentrations of soil nitrogen.  相似文献   

16.
Changes in resource availability often cause competitively driven changes in tree allocation to foliage, wood, and fine roots, either via plastic changes within individuals or through turnover of individuals with differing strategies. Here, we investigate how optimally competitive tree allocation should change in response to elevated atmospheric CO2 along a gradient of nitrogen and light availability, together with how those changes should affect carbon storage in living biomass. We present a physiologically‐based forest model that includes the primary functions of wood and nitrogen. From a tree's perspective, wood is an offensive and defensive weapon used against neighbors in competition for light. From a biogeochemical perspective, wood is the primary living reservoir of stored carbon. Nitrogen constitutes a tree's photosynthetic machinery and the support systems for that machinery, and its limited availability thus reduces a tree's ability to fix carbon. This model has been previously successful in predicting allocation to foliage, wood, and fine roots along natural productivity gradients. Using game theory, we solve the model for competitively optimal foliage, wood, and fine root allocation strategies for trees in competition for nitrogen and light as a function of CO2 and nitrogen mineralization rate. Instead of down‐regulating under nitrogen limitation, carbon storage under elevated CO2 relative to carbon storage at ambient CO2 is approximately independent of the nitrogen mineralization rate. This surprising prediction is a consequence of both increased competition for nitrogen driving increased fine root biomass and increased competition for light driving increased allocation to wood under elevated CO2.  相似文献   

17.
? A high ability of alien plant species to capitalize on increases in resource availability has been suggested as an explanation for being globally successful. Here, we tested this hypothesis meta-analytically using existing data from experiments manipulating plant resources (light, water and nutrients). ? From these studies we extracted the response to resource increase of biomass, as an indicator of plant performance, and the responses of two traits related to resource capture: root : shoot ratio and specific leaf area (SLA). For 211 species recorded in the Global Compendium of Weeds, we assessed the relationship between effect sizes from such studies and the number of global regions where a species was established. ? We found that globally widespread species exhibited greater biomass responses to increases in resources overall, compared to less widespread species. Root : shoot ratio and SLA responses to increased resource availability were not related to species global distribution. ? In general, globally widespread alien plant species were better able to capitalize on increased availability of resources, through achieving increased growth and biomass accumulation, while greater plasticity of key resource-capture traits per se did not appear to be related to greater success.  相似文献   

18.

Background and aims

Water availability is often one of the most limiting factors for plants. Climate change predictions for many areas suggest an intensification of water limitation. The ability of a plant to modify its root characteristics can be an important mechanism for preventing drought stress.

Methods

We studied the drought response of seedlings of 10 woody species and compared the biomass allocation, vertical root distribution across different root diameters, and the key traits of very fine roots (root diameter <0.5 mm) under two water regimes (no water limitation and severe drought).

Results

Under drought conditions, the very fine roots had a higher specific root length (SRL, root length: biomass ratio), smaller root diameter and higher root tissue mass density, as well as a lower nitrogen concentration. A higher value of the mean root plasticity index was related to higher drought resistance. A quantitative literature review showed that there was a wide variation in the effect of the drought on SRL, thus there was not a clear effect of drought on SRL.

Conclusions

Certain species have the necessary root traits and plasticity to survive drought. We have identified plasticity in root characteristics as a whole-plant trait which plays a significant role in separating out species into those which are vulnerable and those which are resistant to drought.  相似文献   

19.
We hypothesized that the greater competitive ability of invasive exotic plants relative to native plants would increase under elevated CO2 because they typically have traits that confer the ability for fast growth when resources are not limiting and thus are likely to be more responsive to elevated CO2. A series of competition experiments under ambient and elevated CO2 glasshouse conditions were conducted to determine an index of relative competition intensity for 14 native-invasive exotic species-pairs. Traits including specific leaf area, leaf mass ratio, leaf area ratio, relative growth rate, net assimilation rate and root weight ratio were measured. Competitive rankings within species-pairs were not affected by CO2 concentration: invasive exotic species were more competitive in 9 of the 14 species-pairs and native species were more competitive in the remaining 5 species-pairs, regardless of CO2 concentration. However, there was a significant interaction between plant type and CO2 treatment due to reduced competitive response of native species under elevated compared with ambient CO2 conditions. Native species had significantly lower specific leaf area and leaf area ratio under elevated compared with ambient CO2. We also compared traits of more-competitive with less-competitive species, regardless of plant type, under both CO2 treatments. More-competitive species had smaller leaf weight ratio and leaf area ratio, and larger relative growth rate and net assimilation rate under both ambient and elevated CO2 conditions. These results suggest that growth and allocation traits can be useful predictors of the outcome of competitive interactions under both ambient and elevated CO2 conditions. Under predicted future atmospheric CO2 conditions, competitive rankings among species may not change substantially, but the relative success of invasive exotic species may be increased. Thus, under future atmospheric CO2 conditions, the ecological and economic impact of some invasive exotic plants may be even greater than under current conditions.  相似文献   

20.
 该文比较了羊草草原群落中包括建群种和优势种在内的6种植物,羊草(Leymus chinensis)、西伯利亚羽茅(Achnatherum sibiricum)、大 针茅(Stipa grandis)、 冰草(Agropyron cristatum)、糙隐子草(Cleistogenes squarrosa)和黄囊苔草(Carex korshinskyi)的比叶 面积(Specific leaf area, SLA)、叶片含氮量和叶绿素含量等叶片功能特性( Leaf functional trait)对氮素添加的响应,旨在探讨草原生态 系统中,不同物种对氮素可利用性改变的响应和适应对策。结果表明:随着氮素添加量的增加,物种对光资源的竞争增强,不同物种在光资源 的竞争策略和竞争力间存在着显著的差异。羊草通过提高SLA、单位质量叶片的叶绿素含量和含氮量,使单位面积叶片含氮量和叶绿素含量均呈 线性提高,进而增强了其对光的竞争力。西伯利亚羽茅主要通过提高SLA增加光合总面积,来增强自身的光竞争力。冰草在SLA和单位质量叶片 的叶绿素和氮含量均有一定的可塑性,但对光的竞争力明显弱于羊草和西伯利亚羽茅。大针茅和黄囊苔草对SLA的调节能力较低,加之大针茅 SLA较低,而黄囊苔草处于群落的下层,这两种植物的光竞争力较弱。糙隐子草具有较高的SLA,对单位质量叶片叶绿素和氮含量的调节能力相 对较强,其光竞争力高于黄囊苔草。同时,糙隐子草叶片叶绿素a与叶绿素b的比值沿氮素添加梯度显著降低,进一步证实氮素添加改变了群落 的光环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号