首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary The intracellular accumulation of ethanol in yeast and its potential effects on growth and fermentation have been topics of controversy for the past several years. The determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate aqueous cell volume was used to examine the question of intracellular ethanol accumulation. An intracellular accumulation of ethanol inSaccharomyces cerevisiae was observed during the early stages of fermentation. However, as fermentation continued, the intracellular and extracellular concentrations of ethanol became similar. Increasing the osmotic pressure of the medium with glucose or sorbitol was observed to cause an increase in the intracellular ethanol concentration. Associated with this was a decrease in yeast growth and fermentation rates. In addition, increasing the osmotic pressure of the medium was observed to cause an increase in glycerol production. Supplementation of the media with excess peptone, yeast extract, magnesium sulfate and potassium phosphate was found to relieve the detrimental effects of high osmotic pressure. Under these conditions, though, no effect on the intracellular and extracellular ethanol distribution was observed. These results indicate that nutrient limitation, and not necessarily intracellular ethanol accumulation, plays a key role during yeast fermentations in media of high osmolarity.  相似文献   

2.
Considerable controversy exists concerning the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. This controversy results from problems in the measurement of the intracellular concentration of compounds like ethanol, which are being produced rapidly by metabolism and potentially diffuse rapidly from the cell. We used a new method for the determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate the aqueous cell volume. This method avoided many of the technical problems in previous reports. Our results indicate that the extracellular concentrations of ethanol in fermenting suspensions of S. cerevisiae are less than or equal to those in the intracellular environment and do not increase to the high levels previously reported even during the most active stages of batch fermentation.  相似文献   

3.
Considerable controversy exists concerning the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. This controversy results from problems in the measurement of the intracellular concentration of compounds like ethanol, which are being produced rapidly by metabolism and potentially diffuse rapidly from the cell. We used a new method for the determination of intracellular ethanol based on the exclusion of [14C]sorbitol to estimate the aqueous cell volume. This method avoided many of the technical problems in previous reports. Our results indicate that the extracellular concentrations of ethanol in fermenting suspensions of S. cerevisiae are less than or equal to those in the intracellular environment and do not increase to the high levels previously reported even during the most active stages of batch fermentation.  相似文献   

4.
The rate of acetaldehyde efflux from yeast cells and its intracellular concentration were studied in the light of recent suggestions that acetaldehyde inhibition may be an important factor in yeast ethanol fermentations. When the medium surrounding cells containing ethanol and acetaldehyde was suddenly diluted, the rate of efflux of acetaldehyde was slow relative to the rate of ethanol efflux, suggesting that acetaldehyde, unlike ethanol, may accumulate intracellularly. Intracellular acetaldehyde concentrations were measured during high cell density fermentations, using direct injection gas chromatography to avoid the need to concentrate or disrupt the cells. Intracellular acetaldehyde concentrations substantially exceeded the extracellular concentrations throughout fermentation and were generally much higher than the acetaldehyde concentrations normally recorded in the culture broth in ethanol fermentations. The technique used was sensitive to the time taken to cool and freeze the samples. Measured intracellular acetaldehyde concentrations fell rapidly as the time taken to freeze the suspensions was extended beyond 2 s. The results add weight to recent claims that acetaldehyde toxicity is responsible for some of the effects previously ascribed to ethanol in alcohol fermentations, especially Zymomonas fermentations. Further work is required to confirm the importance of acetaldehyde toxicity under other culture conditions. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification–fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 °C and 37 °C, while the activity of cellulolytic enzymes is highest at around 50 °C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus β-glucosidase on the cell surface, which successfully converts a cellulosic β-glucan to ethanol directly at 48 °C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of β-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface.  相似文献   

6.
Comparison of three different cell viability methods: slide count, plate count and methylene blue staining techniques, applied onZymomonas mobilis cultures, was performed. The slide technique proved to be faster and more accurate than the plate count method, and both of them far more reliable than the standard methylene blue method which constantly overestimated theZymomonas cell viability. The slide technique is advantageous also because it gives information on the cell morphology changes, notably the abnormal cell elongation, in the ethanol fermentation.  相似文献   

7.
Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild‐type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high‐ethanol‐producing strain was obtained. Designated as TJ2‐3, this strain could ferment xylose and produce 1.5 times more ethanol than wild‐type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains.  相似文献   

8.
We demonstrate direct ethanol fermentation from amorphous cellulose using cellulase-co-expressing yeast. Endoglucanases (EG) and cellobiohydrolases (CBH) from Trichoderma reesei, and β-glucosidases (BGL) from Aspergillus aculeatus were integrated into genomes of the yeast strain Saccharomyces cerevisiae MT8-1. BGL was displayed on the yeast cell surface and both EG and CBH were secreted or displayed on the cell surface. All enzymes were successfully expressed on the cell surface or in culture supernatants in their active forms, and cellulose degradation was increased 3- to 5-fold by co-expressing EG and CBH. Direct ethanol fermentation from 10 g/L phosphoric acid swollen cellulose (PASC) was also carried out using EG-, CBH-, and BGL-co-expressing yeast. The ethanol yield was 2.1 g/L for EG-, CBH-, and BGL-displaying yeast, which was higher than that of EG- and CBH-secreting yeast (1.6 g/L ethanol). Our results show that cell surface display is more suitable for direct ethanol fermentation from cellulose.  相似文献   

9.
Saccharomyces cerevisiae cells were immobilized in calcium alginate beads for use in the continuous production of ethanol. Yeasts were grown in medium supplemented with ethanol to selectively screen for a culture which showed the greatest tolerance to ethanol inhibition. Yeast beads were produced from a yeast slurry containing 1.5% alginate (w/v) which was added as drops to 0.05M CaCl2 solution. To determine their optimum fermentation parameters, ethanol production using glucose as a substrate was monitored in batch systems at varying physiological conditions (temperature, pH, ethanol concentration), cell densities, and gel concentration. The data obtained were compared to optimum free cell ethanol fermentation parameters. The immobilized yeast cells examined in a packed-bed reactor system operated under optimized parameters derived from batch-immobilized yeast cell experiments. Ethanol production rates, as well as residual sugar concentration were monitored at different feedstock flow rates.  相似文献   

10.
Summary The internal pH of Saccharomyces cerevisiae IGC 3507 III (a respiratory-deficient mutant) was measured by the distribution of [14C]propionic acid, when the yeast was fermenting glucose at pH 3.5, 4.5 and 5.5 in the presence of several concentrations of acetic acid and ethanol. Good correlation was obtained between fermentation rates and internal pH. For all external pH values tested, the internal pH was 7.0–7.2 in the absence of inhibitors. The addition of acetic acid and/or ethanol resulted in a decrease of fermentation rate together with a drop in internal pH. Internal pH did not depend on the concentration of total external acetic acid but only on the concentration of the undissociated form of the acid. Ethanol potentiated the effect of acetic acid both with respect to inhibition of fermentation and internal acidification.  相似文献   

11.
High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction–azeotropic distillation technique for the same.  相似文献   

12.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

13.
In the fermentation process, the separation of product and its purification is the most difficult and exigent task in the ground of biochemical engineering. Another major problem that is encountered in the fermentation is product inhibition, which leads to low conversion and low productivities. Extractive fermentation is a technique that helps in the in situ removal of product and better performance of the fermentation. An aqueous two-phase system was employed for in situ ethanol separation since the technique was biofriendly to the Saccharomyces cerevisiae and the ethanol produced. The two-phase system was obtained with polyethylene glycol 4000 (PEG 4000) and ammonium sulfate in water above critical concentrations, with the desire that the ethanol moves to the top phase while cells rest at the bottom. The overall mass transfer coefficient (KLa) was also estimated for the yeast growth at different rpm. The concentration and yield of ethanol were determined for conventional fermentation to be around 81.3% and for extractive fermentation around 87.5% at the end of the fermentation. Based on observation of both processes, extractive fermentation was found to be the best.  相似文献   

14.
The preparation of immobilized living yeast cells adsorbed into or onto delipided specimens of the dwarf duckweed Wolffia arrhiza (Fam. Lemnaceae) is reported. These yeast cell-plant cell conjugates were used for the repeated batch production of ethanol from glucose (143 to 246 g/l) or saccharose (150 g/l). Up to 25 fermentation cycles at 30°C were performed. The cycle time for complete substrate conversion to ethanol was reduced 10-fold by a 5-fold increase of the yeast cell Wolffia conjugate concentration (ε = 0.08 to ε =0.4) ε = volume of cell conjugate/totnl reaction volume. The corresponding ethanol production was 11.5 to 13.5 vol% and 9 vol% respectively. The reported results on the discontinuous ethanol fermentation with Wolffia-immobilized yeast cells open the field for their application in continuous ethanol production processes.  相似文献   

15.
The maximum growth rate of Saccharomyces cerevisiae ATCC 96581, adapted to fermentation of spent sulphite liquor (SSL), was 7 times higher in SSL of hardwood than the maximum growth rate of bakers' yeast. ATCC 96581 was studied in the continuous fermentation of spruce hydrolysate without and with cell recycling. Ethanol productivity by ATCC 96581 in continuous fermentation of an enzymatic hydrolysate of spruce was increased 4.6 times by employing cell recycling. On-line analysis of CO2, glucose and ethanol (using a microdialysis probe) was used to investigate the effect of fermentation pH on cell growth and ethanol production, and to set the dilution rate. Cell growth in the spruce hydrolysates was strongly influenced by fermentation pH. The fermentation was operated in continuous mode for 210 h and a theoretical ethanol yield on fermentable sugars was obtained. Received: 25 May 1998 / Received revision: 11 August 1998 / Accepted: 12 August 1998  相似文献   

16.
Cell recycle and vacuum fermentation systems were developed for continuous ethanol production. Cell recycle was employed in both atmospheric pressure and vacuum fermentations to achieve high cell densities and rapid ethanol fermentation rates. Studies were conducted with Saccharomyces cerevisiae (ATCC No. 4126) at a fermentation temperature of 35°C. Employing a 10% glucose feed, a cell density of 50 g dry wt/liter was obtained in atmospheric-cell recycle fermentations which produced a fermentor ethanol productivity of 29.0 g/liter-hr. The vacuum fermentor eliminated ethanol inhibition by boiling away ethanol from the fermenting beer as it was formed. This permitted the rapid and complete fermentation of concentrated sugar solutions. At a total pressure of 50 mmHg and using a 33.4% glucose feed, ethanol productivities of 82 and 40 g/liter-hr were achieved with the vacuum system with and without cell recycle, respectively. Fermentor ethanol productivities were thus increased as much as twelvefold over conventional continuous fermentations. In order to maintain a viable yeast culture in the vacuum fermentor, a bleed of fermented broth had to be continuously withdrawn to remove nonvolatile compounds. It was also necessary to sparge the vacuum fermentor with pure oxygen to satisfy the trace oxygen requirement of the fermenting yeast.  相似文献   

17.
Ethanol toxicity and its effect on ethanol production by the recombinant ethanologenic Escherichia coli strain KO11 were investigated in batch and continuous fermentation. During batch growth, ethanol produced by KO11 reduced both the specific cell growth rate (µ) and the cell yield (YX/S). The extent of inhibition increased with the production of both acetate and lactate. Subsequent accumulation of these metabolites and ethanol resulted in cessation of cell growth, redirection of metabolism to reduce ethanol production, and increased requirements for cell maintenance. These effects were found to depend on both the glycolytic flux and the flux from pyruvate to ethanol. Pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) activities measured during the batch fermentation suggested that decreased ethanol production resulted from enzyme inhibition rather than down‐regulation of genes in the ethanol‐producing pathway. Ethanol was added in continuous fermentation to provide an ethanol concentration of either 17 or 27 g/L, triggering sustained oscillations in the cell growth rate. Cell concentrations oscillated in‐phase with ethanol and acetate concentrations. The amplitude of oscillations depended on the concentration of ethanol in the fermentor. Through multiple oscillatory cycles, the yield (YP/S) and concentration of ethanol decreased, while production of acetate increased. These results suggest that KO11 favorably adapted to improve growth by synthesizing more ATP though acetate production, and recycling NADH by producing more lactate and less ethanol. Implications of these results for strategies to improve ethanol production are described. Biotechnol. Bioeng. 2010;106: 721–730. © 2010 Wiley Periodicals, Inc.  相似文献   

18.
Aims: To investigate the intracellular ethanol accumulation in yeast cells by using laser tweezers Raman spectroscopy (LTRS). Methods and Results: Ethanol accumulation in individual yeast cells during aerobic fermentation triggered by excess glucose was studied using LTRS. Its amount was obtained by comparing intracellular and extracellular ethanol concentrations during initial process of ethanol production. We found that (i) yeasts start to produce ethanol within 3 min after triggering aerobic fermentation, (ii) average ratio of intracellular to extracellular ethanol is 1·54 ± 0·17 during the initial 3 h after addition of 10% (w/v) excess glucose and (iii) the accumulated intracellular ethanol is released when aerobic fermentation is stimulated with decreasing glucose concentration. Conclusions: Intracellular ethanol accumulation occurs in initial stage of a rapid aerobic fermentation and high glucose concentration may attribute to this accumulation process. Significance and Impact of the Study: This work demonstrates LTRS is a real‐time, reagent‐free, in situ technique and a powerful tool to study kinetic process of ethanol fermentation. This work also provides further information on the intracellular ethanol accumulation in yeast cells.  相似文献   

19.
Summary A two-stage fermentation process has been developed for continuous ethanol production by immobilized cells of Zymomonas mobilis. About 90–92 kg/m3 ethanol was produced after 4 h of residence time. Entrapped cells of Zymomonas mobilis have a capability to convert glucose to ethanol at 93% of the theoretical yield. The immobilized cell system has functioned for several weeks, and experience indicates that the carrageenan gel apparently facilitates easy diffusion of glucose and ethanol.The simplicity and the high productivity of the plug-flow reactor employing immobilized cells makes it economically attrative. An evaluation of process economics of an immobilized cell system indicates that at least 4 c/l of ethanol can be saved using the immobilized cell system rather than the conventional batch system. The high productivity achieved in the immobilized cell reactor results in the requirement for only small reactor vessels indicating low capital cost. Consequently, by switching from batch to immobilized processing, the fixed capital investment is substantially reduced, thus increasing the profitability of ethanol production by fermentation.  相似文献   

20.
An experimental procedure for the quantification of intracellular concentrations of metabolites in exoploysacharide-producing bacteria has been developed. This simple technique is based on the simultaneous quenching and extraction of metabolites using cold ethanol. Extracellular polysaccharide is precipitated with the cell matter generating clean samples which can be further concentrated using evaporation techniques or solid state extraction columns. Intracellular pools, coherent with the operation of the Entner–Doudoroff pathway were observed in Xanthomonas campestris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号