首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large unilamellar dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) liposomes loaded with an aqueous chemotherapeutic drug, cytosine arabinofuranoside (ARA-C), were exposed for 30 min to 60 W/kg continuous-wave (CW) 100-MHz or 2.45-GHz radiation in vitro at temperatures between 37 degrees C and 43 degrees C. Liposomes were exposed in HEPES buffer or in HEPES buffer supplemented with 44% by volume fetal calf serum (FCS). Characteristic phase transition responses were detected in the range of 39 degrees C to 40 degrees C with the presence of FCS, increasing maximum % release of 3H-ARA-C by 20% relative to HEPES suspension. Neither frequency of electromagnetic radiation had any detectable effect on liposome permeability or the location of the phase transition in the presence or absence of FCS.  相似文献   

2.
Rat brain tissue, loaded with 45Ca2+ by intraventricular injection was exposed in vitro to pulsemodulated 1-GHz (SAR of 0.29 or 2.9 W/kg) or 2.45-GHz radiation (SAR = 0.3 W/kg), and in vivo to 2.06-GHz radiation (SAR of 0.12 to 2.4 W/kg). There were no significant differences in efflux of 45Ca2+ between the microwave- and sham-irradiated groups.  相似文献   

3.
To investigate the induction of chromosomal aberrations in mouse m5S cells after exposure to high-frequency electromagnetic fields (HFEMFs) at 2.45 GHz, cells were exposed for 2 h at average specific absorption rates (SARs) of 5, 10, 20, 50 and 100 W/kg with continuous wave-form (CW), or at a mean SAR of 100 W/kg (with a maximum of 900 W/kg) with pulse wave-form (PW). The effects of HFEMF exposure were compared with those in sham-exposed controls and with mitomycin C (MMC) or X-ray treatment as positive controls. We examined all structural, chromatid-type and chromosome-type changes after HFEMF exposures and treatments with MMC and X-rays. No significant differences were observed following exposure to HFEMFs at SARs from 5 to 100 W/kg CW and at a mean SAR of 100 W/kg PW (a maximum SAR of 900 W/kg) compared with sham-exposed controls, whereas treatments with MMC and X-rays increased the frequency of chromatid-type and chromosome-type aberrations. In summary, HFEMF exposures at 2.45 GHz for 2 h with up to 100 W/kg SAR CW and an average 100 W/kg PW (a maximum SAR of 900 W/kg) do not induce chromosomal aberrations in m5S cells. Furthermore, there was no difference between exposures to CW and PW HFEMFs.  相似文献   

4.
Effect of electromagnetic radiation 460 MHz with 2.5-40 Hz pulse modulation rate on Drosophila embryos of 15 h 10 m age was studied. It was demonstrated that a 5-min irradiation with 0.12 W/kg average SAR (3 W/kg pulsed SAR) alters the Drosophila percentage of interrupted development. The effect strength depended on the modulation rate with a pronounced decrease at 10 and 16 Hz. A hypothesis about the presence of thermal and non-thermal mechanisms of action of pulse-modulated microwave radiation diversely effecting the embryos has been put forward and grounded.  相似文献   

5.
Normal human lymphocytes were isolated from the peripheral blood of healthy donors. One-ml samples containing (10(6)) cells in chromosome medium 1A were exposed for 5 days to conventional heating or to continuous wave (CW) or pulsed wave (PW) 2450-MHz radiation at non-heating (37 degrees C) and various heating levels (temperature increases of 0.5, 1.0, 1.5, and 2 degrees C). The pulsed exposures involved 1-microsecond pulses at pulse repetition frequencies from 100 to 1,000 pulses per second at the same average SAR levels as the CW exposures. Actual average SARs ranged to 12.3 W/kg. Following termination of the incubation period, spontaneous lymphoblastoid transformation was determined with an image analysis system. The results were compared among each of the experimental conditions and with sham-exposed cultures. At non-heating levels, CW exposure did not affect transformation. At heating levels both conventional and CW heating enhanced transformation to the same extent and correlate with the increases in incubation temperature. PW exposure enhanced transformation at non-heating levels. This finding is significant (P less than .002). At heating levels PW exposure enhanced transformation to a greater extent than did conventional or CW heating. This finding is significant at the .02 level. We conclude that PW 2450-MHz radiation acts differently on the process of lymphoblastoid transformation in vitro compared with CW 2450-MHz radiation at the same average SARs.  相似文献   

6.
We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg.  相似文献   

7.
C3H/10T1/2 cells were exposed to 2.45-GHz microwaves for 24 h and/or 1.5 Gy of 238-kVp X rays at 3.75 Gy/min. Transformation frequency and cell survival were measured with or without postirradiation addition of the tumor promoter tetradecanoyl-phorbol-13-acetate (TPA) at 0.1 microgram/ml. We previously reported (Carcinogenesis 6,859-864, 1985) an enhancement of transformation frequency when 10T1/2 cells exposed to a special sequence of microwaves and X rays were subsequently cultured in TPA. The same sequence of microwaves and X rays without promotion resulted in a transformation response similar to that induced by X rays alone. We now report statistically significant (at P greater than 0.999) enhancement of transformation response by TPA in cells exposed to 2.45-GHz microwaves (SAR = 4.4 W/kg). Microwaves alone had no effect on transformation. Plating efficiency and cell survival were not affected by TPA or microwave treatments.  相似文献   

8.
The induction of stress proteins in HeLa and CHO cells was investigated following a 2 h exposure to radiofrequency (RF) or microwave radiation. Cells were exposed or sham exposed in vitro under isothermal (37 ± 0.2 °C) conditions. HeLa cells were exposed to 27- or 2450 MHz continuous wave (CW) radiation at a specific absorption rate (SAR) of 25 W/kg. CHO cells were exposed to CW 27 MHz radiation at a SAR of 100 W/kg. Parallel positive control studies included 2 h exposure of HeLa or CHO cells to 40 °C or to 45 μM cadmium sulfate. Stress protein induction was assayed 24 h after treatment by electrophoresis of whole-cell extracted protein labeled with [35S]-methionine. Both cell types exhibited well-characterized responses to the positive control stresses. Under these exposure conditions, neither microwave nor RF radiation had a detectable effect on stress protein induction as determined by either comparison of RF-exposed cells with sham-exposed cells or comparison with heat-stressed or Cd++ positive control cells. Bioelectromagnetics 18:499–505, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Combined effect of 460-MHz microwave irradiation and increased (up to 40 degrees C) temperature on Drosophila embryos of definite age was studied. It was demonstrated that the effect of 5-min exposures to non-modulated microwaves with 6 W/kg SAR accompanied with heating is only a little stronger than at normal temperature (24.5 degrees C). Irradiation with pulse-modulated microwaves with pulse repetition rates of 6, 10, 16, and 22 p.p.s. with average SAR of 0.12 W/kg (pulsed SAR 3 W/kg) combined with increased temperature caused some changes in PID dependent on the pulse rate. At 6 and 22 p.p.s, the increase in PID was close to that observed at normal temperature while at 10 and 16 p.p.s. the microwave irradiation did not produce any noticeable effect on development of the Drosophilas.  相似文献   

10.
Steadily growing use of electromagnetic fields, especially in conjunction with wireless communication systems, has led to increasing public concern about possible health effects of electromagnetic radiation. However, besides the well-known thermal effect of electromagnetic fields on biological tissue, there is no clear evidence of further athermal interaction mechanisms with biological systems. The present study was designed to determine the changes in bilayer permeability in egg lecithin multilamellar vesicles after exposure to 900 MHz microwave radiation for a period of 5 h. Specific absorption rate (SAR) of the radiation for the investigated liposome sample was found to be 12 +/- 1 W/kg. Liposomal changes in permeability were monitored using a light scattering technique. Optical anisotropy of the liposome sample decreased dramatically upon exposure to microwave radiation, indicating structural changes in acyl chain packing. IR and NMR ((1)H NMR) studies, which have been employed to reveal structural alterations in microwave, exposed vesicles showed an increased damage upon exposure to microwave. The changes observed in the (1)H NMR spectrum of the microwave exposed sample indicated hydrolysis of carboxylic and phosphoric esters. IR study showed conformational changes in the acyl chains of the lipids upon microwave exposure. However, both IR and (31)P NMR did not show any appreciable changes in the head group part of the lipids.  相似文献   

11.
To examine the biological effects of radio frequency (RF) electromagnetic fields in vitro, we have examined the fundamental cellular responses, such as cell growth, survival, and cell cycle distribution, following exposure to a wide range of specific absorption rates (SAR). Furthermore, we compared the effects of continuous and intermittent exposure at high SARs. An RF electromagnetic field exposure unit operating at a frequency of 2.45 GHz was used to expose cells to SARs from 0.05 to 1500 W/kg. When cells were exposed to a continuous RF field at SARs from 0.05 to 100 W/kg for 2 h, cellular growth rate, survival, and cell cycle distribution were not affected. At 200 W/kg, the cell growth rate was suppressed and cell survival decreased. When the cells were exposed to an intermittent RF field at 300 W/kg(pk), 900 W/kg(pk) and 1500 W/kg(pk) (100 W/kg(mean)), no significant differences were observed between these conditions and intermittent wave exposure at 100 W/kg. When cells were exposed to a SAR of 50 W/kg for 2 h, the temperature of the medium around cells rose to 39.1 degrees C, 100 W/kg exposure increased the temperature to 41.0 degrees C, and 200 W/kg exposure increased the temperature to 44.1 degrees C. Exposure to RF radiation results in heating of the medium, and the thermal effect depends on the mean SAR. Hence, these results suggest that the proliferation disorder is caused by the thermal effect.  相似文献   

12.
The chronotropic and inotropic effects of 2.45-GHz continuous wave (CW) microwave radiation were investigated in the isolated spontaneously beating rat atria. Isolated atria were placed in specially designed tubes inserted into a waveguide exposure system. The atria were then irradiated for a period of 30 min, followed by a 30-min recovery period. The control atria were prepared simultaneously and sham exposed. Experiments were conducted at two temperatures, 22 and 37 °C, and two specific absorption rates, 2 mW/g and 10 mW/g. At both temperatures the rate of atrial contraction was not altered by a 30-min exposure at either 2 or 10 mW/g. The average rate (beats per min) was approximately 100 for both the control and exposed atria at 22 °C and 215 beats per min for both the control and exposed atria at 37 °C. In addition, no inotropic effects on the spontaneously beating atria were noted at any exposure level. These data suggest that 2.45-GHz CW microwave radiation at these intensities has no overt effect on these variables in isolated rat atria.  相似文献   

13.
Microelectrode and voltage-clamp techniques were modified to record spontaneous electrical activity and ionic currents of Lymnea stagnalis neurons during exposure to a 900-MHz field in a waveguide-based apparatus. The field was pulse-modulated at repetition rates ranging from 0.5 to 110 pps, or it was applied as a continuous wave (CW). When subjected to pulsed waves (PW), rapid, burst-like changes in the firing rate of neurons occurred at SARs of a few W/kg. If the burst-like irregularity was present in the firing rate under control conditions, irradiation enhanced its probability of occurrence. The effect was dependent on modulation, but not on modulation frequency, and it had a threshold SAR near 0.5 W/kg. CW radiation had no effect on the firing rate pattern at the same SAR. Mediator-induced, current activation of acetyl-choline, dopamine, serotonin, or gamma-aminobutyric-acid receptors of the neuronal soma was not altered during CW or PW exposures and, hence, could not have been responsible for the bursting effect.  相似文献   

14.
Lee KS  Choi JS  Hong SY  Son TH  Yu K 《Bioelectromagnetics》2008,29(5):371-379
Mobile phones are widely used in the modern world. However, biological effects of electromagnetic radiation produced by mobile phones are largely unknown. In this report, we show biological effects of the mobile phone 835 MHz electromagnetic field (EMF) in the Drosophila model system. When flies were exposed to the specific absorption rate (SAR) 1.6 W/kg, which is the proposed exposure limit by the American National Standards Institute (ANSI), more than 90% of the flies were viable even after the 30 h exposure. However, in the SAR 4.0 W/kg strong EMF exposure, viability dropped from the 12 h exposure. These EMF exposures triggered stress response and increased the production of reactive oxygen species. The EMF exposures also activated extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling, but not p38 kinase signaling. Interestingly, SAR 1.6 W/kg activated mainly ERK signaling and expression of an anti-apoptotic gene, whereas SAR 4.0 W/kg strongly activated JNK signaling and expression of apoptotic genes. In addition, SAR 4.0 W/kg amplified the number of apoptotic cells in the fly brain. These findings demonstrate that the exposure limit on electromagnetic radiation proposed by ANSI triggered ERK-survival signaling but the strong electromagnetic radiation activated JNK-apoptotic signaling in Drosophila.  相似文献   

15.
Because exposure to microwave fields at the resonant frequency may generate heat deep in the body, hyperthermia may result. This problem has been examined in an animal model to determine both the thresholds for response change and the steady-state thermoregulatory compensation for body heating during exposure at resonant (450 MHz) and supra-resonant (2,450 MHz) frequencies. Adult male squirrel monkeys, held in the far field of an antenna within an anechoic chamber, were exposed (10 min or 90 min) to either 450-MHz or 2,450-MHz CW fields (E polarization) in cool environments. Whole-body SARs ranged from 0-6 W/kg (450 MHz) and 0-9 W/kg (2,450 MHz). Colonic and several skin temperatures, metabolic heat production, and evaporative heat loss were monitored continuously. During brief RF exposures in the cold, the reduction of metabolic heat production was directly proportional to the SAR, but 2,450-MHz energy was a more efficient stimulus than was the resonant frequency. In the steady state, a regulated increase in deep body temperature accompanied exposure at resonance, not unlike that which occurs during exercise. Detailed analyses of the data indicate that temperature changes in the skin are the primary source of the neural signal for a change in physiological interaction processes during RF exposure in the cold.  相似文献   

16.
Effects of 2.45-GHz microwaves on primate corneal endothelium   总被引:3,自引:0,他引:3  
Both eyes of anesthetized cynomolgus monkeys (Macaca fascicularis) were irradiated with 2.45-GHz microwaves, either pulsed or continuous wave. In vivo corneal endothelial abnormalities were observed by specular microscopy and confirmed through histologic techniques after a 16- to 48-hour postexposure period. Pulsed microwaves with an average power density of 10 mW/cm2 (equivalent to a specific absorption rate (SAR) = 2.6 W/kg) produced these effects, while levels of 20-30 mW/cm2 (equivalent to a SAR = 5.3 to 7.8 W/kg) with continuous wave irradiation were required to produce similar changes.  相似文献   

17.
Adult male, Long-Evans rats were exposed 7 h a day for 90 days to continuous wave (CW) 2,450-MHz microwaves at an average power density of 0.5 mW/cm2. Exposures were in a monopole-above-ground radiation chamber with rats in Plexiglas cages. The resulting specific absorption rate (SAR) was 0.14 W/kg (+/- 0.01 SEM). Additional rats served as sham-exposed and home-caged controls. All were evaluated daily for body mass and food and water intakes. Once each 30 days, throughout baseline and exposure phases of the experiment, rats in the sham- and microwave-exposed groups were tested for their sensitivity to footshock. After 90-days of exposure, the rats were evaluated an open field, an active avoidance task and an operant task for food reinforcement. Performance of sham- and microwave-irradiated rats was reliably different on only one measure, the lever-pressing task. The general conclusion reached was that exposure to CW 2,450-MHz microwave radiation at 0.5 mW/cm2 was below the threshold for behavioral effects over a wide range of variables, but did have an effect on a time-related operant task, although the direction of the effect was unpredictable.  相似文献   

18.
Anatomic variability in the deposition of radiofrequency electromagnetic energy in mammals has been well documented. A recent study [D'Andrea et al., 1985] reported specific absorption rate (SAR) hotspots in the brain, rectum and tail of rat carcasses exposed to 360- and to 2,450-MHz microwave radiation. Regions of intense energy absorption are generally thought to be of little consequence when predicting thermal effects of microwave irradiation because it is presumed that heat transfer via the circulatory system promptly redistributes localized heat to equilibrate tissue temperature within the body. Experiments on anesthetized, male Long-Evans rats (200-260 g) irradiated for 10 or 16 min with 2,450, 700, or 360 MHz radiation at SARs of 2 W/kg, 6 W/kg, or 10 W/kg indicated that postirradiation localized temperatures in regions previously shown to exhibit high SARs were appreciably above temperatures at body sites with lower SARs. The postirradiation temperatures in the rectum and tail were significantly higher in rats irradiated at 360 MHz and higher in the tail at 2,450 MHz than temperatures resulting from exposure to 700 MHz. This effect was found for whole-body-averaged SARs as low as 6 W/kg at 360 MHz and 10 W/kg at 2,450 MHz. In contrast, brain temperatures in the anesthetized rats were not different from those measured in the rest of the body following microwave exposure.  相似文献   

19.
Escherichia coli pol A+ and pol A? strains were exposed to 8.8-GHz microwaves pulsed at 1,000 Hz (1-μs pulse width) and an SAR of 40 W/kg, which increased the temperature of the cell culture by 7 °C. Two-way analysis of variance showed no significant difference between the growth rates of microwave irradiated and thermally exposed cells.  相似文献   

20.
Groups of female BALB/C mice were irradiated with 425-MHz radio frequency (RF) radiation either continuous wave (CW) or pulse modulated (PM, 1-ms pulse width, 250 pulses/s). Mice were irradiated in a rectangular strip-transmission line at average forward powers of 78, 17.7, or 5 W for CW and 17.7, 5, or 1.25 W for PM. The mean specific absorption rate, as measured using twin-well calorimetry was 7.7 W/kg for a forward power of 70 W. No differences in the mitogen-stimulated response of lymphocytes or in the primary antibody response to sheep erythrocytes or polyvinylpyrrolidone were observed between irradiated and sham-irradiated mice, nor between mice exposed to either CW or PM 425-MHz RF radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号