首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncertainty persists concerning the best method of estimating the volume and solute concentrations of the pulmonary epithelial lining fluid (ELF) recovered during bronchoalveolar lavage (BAL). In the present study, measurements were made of the BAL-to-plasma concentration ratios of a variety of solutes in an anesthetized rat model. One minute after an intravenous injection of labeled Na+ and urea, 5 ml of isotonic mannitol, saline, or glucose were injected into the trachea and an initial aliquot of the BAL was immediately removed. Initial BAL-to-plasma concentration ratios of urea, Na+, Cl-, Ca2+, and total protein were similar (ranging from 0.013 to 0.017) after BAL with mannitol, but albumin and transferrin ratios were approximately 60% lower and K+ ratios were five times greater. Lavage with saline yielded BAL-to-plasma urea concentration ratios similar to those obtained with mannitol lavage. The BAL-to-plasma specific activity of urea was about twice that of Na+, indicating that urea diffused into the ELF more rapidly than Na+ during the 70 s that elapsed between the time the radioactive urea and Na+ were injected into the circulation and the time when lavage was complete. Subsequent lavage samples also indicated that urea rapidly diffuses into the fluid-filled lungs. These experiments suggest that isotonic mannitol may be a useful solution for lavage, because it allows use of Na+ and perhaps Cl- as additional indicators of ELF dilution by BAL.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Previous studies, both in intact lungs and epithelial lining fluid (ELF) (J. Appl. Physiol. 68: 594-603, 1990 and J. Appl: Physiol. 69: 523-531, 1990), have suggested that the steady-state absorption of inhaled NO2 is mediated by chemical reaction(s) between NO2 and ELF solute reactants. To characterize the kinetics of NO2 absorption into aqueous biological substrates across a gas-liquid interface, we utilized a closed system of known geometry and initial gas phase [NO2] [([NO2]g)0] to expose ELF (as bronchoalveolar lavage; BAL) and a biochemical model system (glutathione, GSH). Assessments of NO2 reactive uptake, into both GSH and ELF, indicated first-order NO2 kinetics [([NO2]g)0 less than or equal to 10.5 ppm] with effective rate constants of (kNO2)GSH = 4.8 and (kNO2)BAL = 2.9 ml.min-1.cm-2 (stirred). Above 10.5 ppm (1 mM GSH), zero-order kinetics were observed. Both (kNO2)GSH and (kNO2)BAL showed aqueous reactant dependence. The reaction order with respect to GSH and BAL was 0.47 and 0.64, respectively. We found no effect of interfacial surface area or bulk phase volume on kNO2. In unstirred systems, significant interfacial resistance was observed and was related to reactant concentration. These results indicate that NO2 reactive uptake follows first-order kinetics with respect to NO2 ([NO2]g less than or equal to 10.5 ppm) and displays aqueous substrate dependence. Furthermore the site of reactive absorption appears to be limited to near the aqueous surface interface. Unstirred conditions confine interfacial mass transfer kinetics in a dose-dependent manner. These phenomenological coefficients may provide the basis for direct extrapolation to environmentally relevant exposure concentrations.  相似文献   

3.
With the use of an isolated rat lung model, we investigated pulmonary air space absorption kinetics of the reactive gas NO2 in an effort to determine the contributory role of chemical reaction(s) vs. physical solubility. Unperfused lungs were employed, because vascular perfusion had no effect on acute (0- to 60-min) NO2 absorption rates. We additionally found the following: 1) Uptake was proportional to exposure rates (2-14 micrograms NO2/min; 10-63 ppm; 37 degrees C) but saturated with exposures greater than or equal to 14 micrograms NO2/min. 2) Uptake was temperature (22-48 degrees C) dependent but, regardless of temperature, attained apparent saturation at 10.6 micrograms NO2/min. 3) Lung surface area (SA) was altered by increasing functional residual capacity (FRC). Expanded SA (8 ml FRC) and temperature (48 degrees C) both raised fractional uptakes (greater than or equal to 0.81) relative to 4 ml FRC, 37 degrees C (0.67). Uptake rates normalized per unit estimated SA revealed no independent effect of FRC on fractional uptake. However, temperature produced a profound effect (48 degrees C = 0.93; 4 and 8 ml FRC = 0.54). 4) Arrhenius plots (ln k' vs. 1/T), which utilized derived reactive uptake coefficients (k'), showed linearity (r2 = 0.94) and yielded an activation energy of 7,536 kcal.g-1.mol-1 and Q10 of 1.43, all consistent with a reaction-mediated process. These findings, particularly the effects of temperature, suggest that acute NO2 uptake in pulmonary air spaces is, in part, rate limited by chemical reaction of NO2 with epithelial surface constituents rather than by direct physical solubility.  相似文献   

4.
5.
Our recent experimental work demonstrated that a neutrophil-dependent inflammatory response in the lung prevented the normal up-regulation of alveolar fluid clearance by catecholamines following hemorrhagic shock. In this study, we tested the hypothesis that the release of NO within the airspaces of the lung was responsible for the shock-mediated failure of the alveolar epithelium to respond to catecholamines in rats. Hemorrhagic shock was associated with an inducible NO synthase (iNOS)-dependent increase in the lung production of NO and a failure of the alveolar epithelium to up-regulate vectorial fluid transport in response to beta-adrenergic agonists. Inhibition of iNOS restored the normal catecholamine-mediated up-regulation of alveolar liquid clearance. Airspace instillation of dibutyryl cAMP, a stable analog of cAMP, restored the normal fluid transport capacity of the alveolar epithelium after prolonged hemorrhagic shock, whereas direct stimulation of adenyl cyclase by forskolin had no effect. Pretreatment with pyrrolidine dithiocarbamate or sulfasalazine attenuated the iNOS-dependent production of NO in the lung and restored the normal up-regulation of alveolar fluid clearance by catecholamines after prolonged hemorrhagic shock. Based on in vitro studies with an alveolar epithelial cell line, A549 cells, the effect of sulfasalazine appeared to be mediated in part by inhibition of NF-kappaB activation, and the protective effect was mediated by the inhibition of IkappaBalpha protein degradation. In summary, these results provide the first in vivo evidence that NO, released within the airspaces of the lung probably secondary to the NF-kappaB-dependent activation of iNOS, is a major proximal inflammatory mediator that limits the rate of alveolar epithelial transport after prolonged hemorrhagic shock by directly impairing the function of membrane proteins involved in the beta-adrenergic receptor-cAMP signaling pathway in alveolar epithelium.  相似文献   

6.
7.
Edema fluid (EF) increases epithelial Na(+) transport by rat fetal distal lung epithelia (FDLE) and induces net lung fluid absorption in fetal mouse lung explants [Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM, O'Brodovich H. J Physiol (Lond) 544: 537-548, 2002]. We now show that EF increases fluid absorption across monolayers of rat FDLE in a dose-dependent manner. To study the role of subunits of the epithelial Na(+) channel (ENaC) in the phenomena, we cultured explants from the distal lungs of 16-day gestational age wild-type (WT) or alpha-, beta-, or gamma-ENaC knockout or heterozygote (HT) mice. WT explants cultured in media continuously expanded over time as a result of net fluid secretion. In contrast, when explants were exposed to EF for 24 h, net fluid absorption occurred. EF-exposed explants had normal histology, but marked changes were seen after Triton X-100 or staurosporine exposure. Transmission electron microscopy showed EF promoted lamellar body formation and abundant surfactant in the explants' lumens. EF-induced changes in explant size were similar in alpha-ENaC knockout, WT, and HT littermate fetal lung explants (P > 0.05). In contrast, EF's effect was attenuated in beta- and gamma-ENaC knockouts (P < 0.05) vs. WT and HT littermate fetal lung explants. EF exposure slightly decreased or had no effect on mRNA levels for alpha-ENaC in various mouse genotypes but decreased expression of beta- and gamma-ENaC subunit mRNAs (P < 0.01) across all genotype groups. We conclude that beta- and gamma-, but not alpha-, ENaC subunits are essential for EF to exert its maximal effect on net fluid absorption by distal lung epithelia.  相似文献   

8.
Normal alveolar epithelial lining fluid contains high levels of glutathione   总被引:7,自引:0,他引:7  
The epithelial cells on the alveolar surface of the human lower respiratory tract are vulnerable to toxic oxidants derived from inhaled pollutants or inflammatory cells. Although these lung cells have intracellular antioxidants, these defenses may be insufficient to protect the epithelial surface against oxidants present at the alveolar surface. This study demonstrates that the epithelial lining fluid (ELF) of the lower respiratory tract contains large amounts of the sulfhydryl-containing antioxidant glutathione (GSH). The total glutathione (the reduced form GSH and the disulfide GSSG) concentration of normal ELF was 140-fold higher than that in plasma of the same individuals, and 96% of the glutathione in ELF was in the reduced form. Compared with nonsmokers, cigarette smokers had 80% higher levels of ELF total glutathione, 98% of which was in the reduced form. Studies of cultured lung epithelial cells and fibroblasts demonstrated that these concentrations of reduced glutathione were sufficient to protect these cells against the burden of H2O2 in the range released by alveolar macrophages removed from the lower respiratory tract of nonsmokers and smokers, respectively, suggesting that the glutathione present in the alveolar ELF of normal individuals likely contributes to the protective screen against oxidants in the extracellular milieu of the lower respiratory tract.  相似文献   

9.

Background

Lung epithelial lining fluid (ELF)—sampled through sputum induction—is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood.

Objectives

To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort.

Methods

Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes.

Results

The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender.

Conclusions

We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.
  相似文献   

10.
11.
Bronchoalveolar lavage is a powerful technique for sampling the epithelial lining fluid (ELF) of the lower respiratory tract but also results in a significant dilution of that fluid. To quantify the apparent volume of ELF obtained by bronchoalveolar lavage, urea was used as an endogenous marker of ELF dilution. Since urea diffuses readily through the body, plasma and in situ ELF urea concentrations are identical; thus ELF volume can be calculated using simple dilution principles. Using this approach, we determined that with a standard lavage procedure, the volume of ELF recovered from a normal human is 1.0 +/- 0.1 ml/100 ml of recovered lavage fluid. Time course experiments in which the saline used for lavage was permitted to remain in the lower respiratory tract for various "dwell times" suggested that diffusion of urea from sources other than recovered ELF can contribute to the total urea recovered resulting in an overestimate of the volume of ELF recovered. Thus, while reasonably accurate, the volume of ELF determined by urea must be considered an overestimate, or "apparent" volume. The ELF albumin concentration based on the apparent ELF volume was 3.7 +/- 0.3 mg/ml, a value that is in good agreement with direct measurements made by other techniques in experimental animals. The density of all inflammatory and immune effector cells on the epithelial surface of the lower respiratory tract, based on the apparent ELF volume, was 21,000 +/- 3,000 cells/microliter, a value that is twofold greater than that in blood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Epidemiology studies show association of morbidity and mortality with exposure to ambient air particulate matter (PM). Metals present in PM may catalyze oxidation of important lipids and proteins present in the lining of the respiratory tract. The present study investigated the PM-induced oxidation of human bronchoalveolar lavage (BAL) fluid (BALF) and synthetic lung epithelial lining fluid (sELF) through the measurement of oxygen incorporation and antioxidant depletion assays. Residual oil fly ash (ROFA), an emission source PM that contains approximately 10% by weight of soluble transition metals, was added (0-200 microg/ml) to BALF or sELF and exposed to 20% (18)O(2) (24 degrees C, 4 h). Oxygen incorporation was quantified as excess (18)O in the dried samples after incubation. BALF and diluted sELF yielded similar results. Oxygen incorporation was increased by ROFA addition and was enhanced by ascorbic acid (AA) and mixtures of AA and glutathione (GSH). AA depletion, but not depletion of GSH or uric acid, occurred in parallel with oxygen incorporation. AA became inhibitory to oxygen incorporation when it was present in high enough concentrations that it was not depleted by ROFA. Physiological and higher concentrations of catalase, superoxide dismutase, and glutathione peroxidase had no effect on oxygen incorporation. Both protein and lipid were found to be targets for oxygen incorporation; however, lipid appeared to be necessary for protein oxygen incorporation to occur. Based on these findings, we predict that ROFA would initiate significant oxidation of lung lining fluids after in vivo exposure and that AA, GSH, and lipid concentrations of these fluids are important determinants of this oxidation.  相似文献   

13.
14.

Background

KL-6 is a mucin-like glycoprotein expressed on the surface of alveolar type II cells. Elevated concentrations of KL-6 in serum and epithelial lining fluid (ELF) in patients with acute respiratory distress syndrome (ARDS) have been previously reported; however, kinetics and prognostic significance of KL-6 have not been extensively studied. This study was conducted to clarify these points in ARDS patients.

Methods

Thirty-two patients with ARDS who received mechanical ventilation under intubation were studied for 28 days. ELF and blood were obtained from each patient at multiple time points after the diagnosis of ARDS. ELF was collected using a bronchoscopic microsampling procedure, and ELF and serum KL-6 concentrations were measured.

Results

KL-6 levels in ELF on days 0 to 3 after ARDS diagnosis were significantly higher in nonsurvivors than in survivors, and thereafter, there was no difference in concentrations between the two groups. Serum KL-6 levels did not show statistically significant differences between nonsurvivors and survivors at any time point. When the highest KL-6 levels in ELF and serum sample from each patient were examined, KL-6 levels in both ELF and serum were significantly higher in nonsurvivors than in survivors. The optimal cut-off values were set at 3453 U/mL for ELF and 530 U/mL for serum by receiver operating characteristic (ROC) curve analyses. Patients with KL-6 concentrations in ELF higher than 3453 U/mL or serum concentrations higher than 530 U/mL had significantly lower survival rates up to 90 days after ARDS diagnosis.

Conclusions

ELF and serum KL-6 concentrations were found to be good indicators of clinical outcome in ARDS patients. Particularly, KL-6 levels in ELF measured during the early period after the diagnosis were useful for predicting prognosis in ARDS patients.  相似文献   

15.
Although the transport of solutes from air spaces to plasma has been extensively studied, comparatively little information is available concerning solute equilibration between the plasma and the epithelial lining fluid (ELF) of air-filled lungs. In the present study, 11 lipophobic indicators varying in molecular mass between 22 and 80,000 Da were injected intravenously and/or intramuscularly into anesthetized rats in a manner designed to keep blood concentrations constant. The animals were killed by rapid lavage of their lungs at various intervals up to 120 min after the injections had been made. Indicator concentrations in the bronchoalveolar lavage (BAL) fluid and plasma were determined, and BAL-to-plasma concentration ratios were calculated for indicators that were injected (exogenous: [14C]urea, 22Na+, [3H]mannitol, 99mTc-diethylenetriaminepentaacetate (a chelate), 51Cr-(ethylene dinitrilo)tetraacetate (a chelate), 113mIn-transferrin, human albumin, and Evans blue-labeled rat albumin) and those that were already present from the plasma and ELF (unlabeled urea, rat albumin, and rat transferrin). Leakage of exogenous indicators in the blood into the BAL fluid was observed during the lavage procedure. Leakage of [14C]urea, 22Na+, and [3H]mannitol exceeded that of the heavier solute molecules. Diffusion of proteins and the labeled chelates into the ELF before lavage occurred at similar rates, suggesting vesicular transport. Use of rapidly diffusible solutes such as urea for determining dilution of ELF by BAL should be accompanied by intravascular injections of labeled solutes to correct for diffusion from the blood during lavage. Alternatively, labeled chelates or serum proteins can be used to estimate dilution of ELF by BAL. Interstitial sampling may be inevitable if the epithelium has been injured before lavage.  相似文献   

16.
Lung epithelial lining fluid (ELF) is a thin layer of plasma ultrafiltrate and locally secreted substances that may provide antioxidant protection and serve as a "front-line" defense for the lower respiratory tract epithelium. To characterize the antioxidant properties of ELF, young, healthy, nonsmoking volunteers underwent bronchoalveolar lavage with determination of ELF volumes and ELF proteins. ELF (greater than 0.4 ml) is a potent inhibitor of lipid peroxidation as measured by malondialdehyde (MDA) production in an in vitro iron-dependent assay system. Two serum proteins, transferrin and ceruloplasmin, were quantitated in ELF and found to be potent inhibitors of lipid peroxidation. Other ELF components, including vitamin E, vitamin C, and albumin, did not function as antioxidants in this system. Several experimental observations suggest that ELF transferrin was more important than ceruloplasmin in inhibiting lipid peroxidation: 1) ELF concentrations of transferrin were 20-fold higher than those for ceruloplasmin; 2) ELF antioxidant activity was abolished by preincubation with Fe3+; 3) ELF antioxidant activity was minimally affected by sodium azide, which is known to inhibit ceruloplasmin ferroxidase activity; and 4) ELF ceruloplasmin ferroxidase activity was virtually nondetectable. ELF possesses a significant antioxidant activity that may be important in vivo in protecting the lung from oxidant injury.  相似文献   

17.
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (.NO2) and peroxynitrite (ONOO-). Classically known as a major component of both indoor and outdoor air pollution, .NO2 is a toxic free radical gas. .NO2 can also be formed during inflammation by the decomposition of ONOO- or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, .NO, has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to .NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by .NO2 or otherRNS, we routinely expose cells in culture to continuous gas-phase .NO2. Studies using the .NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, .NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, .NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to .NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.  相似文献   

18.
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (·NO2) and peroxynitrite (ONOO). Classically known as a major component of both indoor and outdoor air pollution, ·NO2 is a toxic free radical gas. ·NO2 can also be formed during inflammation by the decomposition of ONOO or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, ·NO2 has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to ·NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by ·NO2 or other RNS, we routinely expose cells in culture to continuous gas-phase ·NO2. Studies using the ·NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, ·NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, ·NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to ·NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.  相似文献   

19.
The effects of exposure of animals to 100% O2 and NO2 on the rate of prostaglandin metabolism by lung and kidney were studied in vitro. Exposure of guinea pigs to 100% O2 for 48 h inhibited the metabolism of prostaglandin F2 alpha by both NAD+- and NADP+-dependent prostaglandin dehydrogenase in lung, but had no effect on the metabolism in kidney. Succinate dehydrogenase, but not glucose 6-phosphate dehydrogenase, in guinea-pig lung was inhibited by exposure to 100% O2. Exposure to 46 p.p.m. but not 16 or 29 p.p.m. NO2 for 6 h inhibited guinea-pig lung prostaglandin dehydrogenase in vitro. The inhibition of pulmonary prostaglandin dehydrogenase by exposure to 100% O2 or to 49 p.p.m. NO2 was dependent on the duration of exposure, but returned to control values within 7 days after cessation of the exposure. The pulmonary transport system responsible for removing circulating prostaglandins from the blood was not affected by exposure to 100% O2 as measured by using the isolated perfused lung. Kinetic analysis of the inhibition of pulmonary prostaglandin dehydrogenase activity in guinea pig exposed to 100% O2 showed non-competitive inhibition with respect to both prostaglandin F2 alpha and NAD+, which suggests destruction or inactivation of the enzyme. Pulmonary prostaglandin dehydrogenase appears to be inhibited by exposure to oxidant gases, which may lead to elevated prostaglandin concentrations in the lungs or in the systemic circulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号