首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Using particle bombardment of mature somatic embryos followed by the induction of secondary embryogenesis in the presence of hygromycin, we produced over 90 lines of transgenic embryonal masses expressing β-glucuronidase from two genotypes of black spruce. Transformation efficiencies of up to 7% (1 transgenic line per 14 embryos bombarded) were achieved by extending the period of selection from 8 to 12 weeks. Proliferation of transformed embryonal masses in the presence of hygromycin had no effect on either embryogenicity or embryo maturation. Southern blot hybridization and PCR amplification confirmed the presence of the hygromycin phosphotransferase gene in genomic DNA. The expression of the β-glucuronidase gene in the needles of regenerated seedlings support the potential for long-term transgene expression in spruce. Received: 1 December 1997 / Revision received: 2 January 1999 / Accepted: 15 June 1999  相似文献   

2.
Summary Phosphomannose isomerase (PMI) catalyzes the reversible interconversion of mannose 6-phosphate and fructose 6-phosphate. Plant cells lacking this enzyme are incapable of surviving on synthetic medium containing mannose as a carbon source. Maize, wheat and barley plants, genetically modified to express the Escherichia coli manA gene (pmi) under the control of a plant promoter, were able to survive selection on mannose-containing medium. Transformation frequencies averaged 45% for maize transformation via Biolistics 35% for maize Agrobacterium-mediated transformation, 20% for wheat, 3% for barley, and 2% for watermelon transformation. Moreover, the frequencies exceeded those obtained for maize and wheat using the pat or bar gene with Basa? selection. A preliminary safety assessment has been conducted for PMI. Purified PMI protein demonstrates no adverse, effects in an acute mouse toxicity test. Purified PMI protein was readily digested in simulated mammalian gastric and intestinal fluids. Plants derived from surgar beet and corn cells that had been genetically modified to express the E. coli manA gene were evaluated for biochemical changes in mannose-associated pathways. No detectable changes in glycoprotein profiles were detected in PMI-transformed plants as compared to nontransgenic controls. The yield and nutritional composition of grain from PMI-transformed corn plants compared to their non-transformed isogenic counterparts were also determined and no statistically significant differences were found. The inherent safety of a system based on simple sugar metabolism coupled with high transformation frequencies for monocots make pmi and ideal selectable marker for plant transformation.  相似文献   

3.
Summary Selectable marker genes play an important role in plant transformation. The level of selection pressure is generally established by generating a kill curve for the selectable marker. In most cases, the lowest concentration which kills all explants is used. This study examined two selectable marker genes, phosphinothricin acetyl transferase (PAT) and hygromycin phosphotransferase (HPT), in transformation of tobacco leaf disks. Experiments to determine the lethal level of the herbicide, glufosinate-ammonium (phosphinothricin) (PPT) using a leaf-disk regeneration assay established that no shoots regenerated at 2 to 4 mg PPT per 1. Likewise with the antibiotic, hygromycin (HYG), no plants regenerated at 50 mg hygromycin per 1. In contrast, after cocultivation of the leaf disks withAgrobacterium tumefaciens containing either the PAT or HPT gene in combination with a Bt gene for insect resistance, plants were successfully regenerated from leaf disks at 2 to 4 mg PPT per 1 and 50 mg hygromycin per 1. However, most plants regenerated at 2 and 3 mg PPT per 1 were found to be nontransformed (95–100% escapes) by i) Southern-blot analysis, ii) herbicide application test, and iii) insect feeding bioassay. On the other hand, plants that regenerated on 50 mg hygromycin per 1 and 4 mg PPT per 1 were transgenic as determined by Southern analysis, leaf assay for PPT or HYG resistance, and death of tobacco budworms feeding on these leaves. This study showed a significant level of cross-protection and/or transient expression of the PAT selectable marker gene allowing escapes (95–100%) at selection levels of 2 and 3 mg PPT per 1 which completely kill controls. On the other hand, the HPT gene at 50 mg is efficient in selecting for T-DNA integration.  相似文献   

4.
Acetolactate synthase (ALS) is a target enzyme for many herbicides, including sulfonylurea and imidazolinone. We investigated the usefulness of a mutated ALS gene of rice, which had double point mutations and encoded an herbicide-resistant form of the enzyme, as a selectable marker for wheat transformation. After the genomic DNA fragment from rice containing the mutated ALS gene was introduced into immature embryos by means of particle bombardment, transgenic plants were efficiently selected with the herbicide bispyribac sodium (BS). Southern blot analysis confirmed that transgenic plants had one to more than ten copies of the transgene in their chromosomes. Adjustment of the BS concentration combined with repeated selection effectively prevented nontransgenic plants from escaping herbicide selection. Measurement of ALS activity indicated that transgenic plants produced an herbicide-resistant form of ALS and therefore had acquired the resistance to BS. This report is the first to describe a selection system for wheat transformation that uses a selectable marker gene of plant origin.  相似文献   

5.
 Streptothricins are known as antimicrobial agents produced by Streptomyces spp. Bacterial resistance to streptothricin is mediated by specific enzymes exhibiting an acetyltransferase activity which renders the drug non-toxic for bacteria. The nucleotide sequence of several streptothricin resistance genes from bacteria have been described. Certain cells of eukaryotic parasites (such as Ustilago maydis or Leishmania spp.) are sensitive to streptothricin and the introduction of the bacterial resistance gene sat2 renders them resistant. We show that numerous species of plants are sensitive to low concentrations of streptothricin. Moreover, introduction of the bacterial resistance gene sat3 under the control of the 35S cauliflower mosaic virus promoter protects these cells from the toxic action of streptothricin. Therefore, sat3-mediated streptothricin resistance appears to be a promising selective marker for genetic manipulation of plant cells. Received: 6 November 1996 / Revision received: 9 January 1997 / Accepted: 22 March 1999  相似文献   

6.
Tobacco cells are sensitive to bleomycin and phleomycin. The Tn5 and the Streptoalloteichus hindustanus (Sh) bleomycin resistance (Ble) genes conferring resistance to these antibiotics have each been inserted into two plant expression vectors. They are flanked by the nopaline synthase (nos) or the cauliflower mosaic virus (CaMV) 35S promoters on one side, and by the nos polyadenylation signal on the other. These four chimaeric genes were introduced into the binary transformation vector pGA 492, which were thereafter mobilized into Agrobacterium tumefaciens strain LBA 4404. The resulting strains were used to transform Nicotiana tabacum cv. Xanthi nc using the leaf disc transformation procedure. In all cases, phleomycin- and bleomycin-resistant tobacco plants were regenerated from transformed cells under selective conditions; however the highest frequency of rooted plants was obtained when transformation was carried out with the Sh Ble gene under the control of the 35S promoter. Phleomycin resistance was stably transmitted to sexual offspring as a dominant nuclear trait as confirmed by Southern blotting.  相似文献   

7.
We report on a novel chimeric gene that confers kanamycin resistance on tobacco plastids. The kan gene from the bacterial transposon Tn5, encoding neomycin phosphotransferase (NPTII), was placed under control of plastid expression signals and cloned between rbcL and ORF512 plastid gene sequences to target the insertion of the chimeric gene into the plastid genome. Transforming plasmid pTNH32 DNA was introduced into tobacco leaves by the biolistic procedure, and plastid transformants were selected by their resistance to 50 g/ml of kanamycin monosulfate. The regenerated plants uniformly transmitted the transplastome to the maternal progeny. Resistant clones resulting from incorporation of the chimeric gene into the nuclear genome were also obtained. However, most of these could be eliminated by screening for resistance to high levels of kanamycin (500 g/ml). Incorporation of kan into the plastid genome led to its amplification to a high copy number, about 10000 per leaf cell, and accumulation of NPTII to about 1% of total cellular protein.  相似文献   

8.
Summary Plant genetic transformation technologies rely upon the selection and recovery of transformed cells. Selectable marker genes used so far have been either antibiotic resistance genes or herbicide tolerance genes. There is a need to apply alternative principles of selection, as more transgenic traits have to be incorporated into a transgenic crop and because of concern that the use of conventional marker genes may pose a threat to humans and the environment. New classes of marker genes are now available, conferring metabolic advantage of the transgenic cells over the non-transformed cells. The new selection systems, as described in this review, are being used with success and superior performance over the traditional marker systems.  相似文献   

9.
In this project we have analysed the use of an intron-containing neomycin phosphotransferase II - nptII - gene. The advantage of this construct is that only eukaryotic organisms will be able to process this gene. Accordingly, the theoretical risk of horizontal gene flow of antibiotic resistance genes from transgenic plants to enteric bacteria is eliminated. The ST-LS1 intron IV2 from potato was inserted into the coding region of nptII. Transformation of Solanum tuberosum (potato) and Nicotiana tabacum (tobacco) with constructs containing the intron nptII showed similar transformation frequencies to transformation with constructs containing the normal nptII. Analysis of total DNA and RNA confirmed that the intron-containing nptII gene was present in the plants and that the mRNA was processed correctly.  相似文献   

10.
Arabitol dehydrogenase as a selectable marker for rice   总被引:3,自引:0,他引:3  
Arabitol dehydrogenase has been adapted for use as a plant selectable marker. Arabitol is a five-carbon sugar alcohol that can be used by E. coli strain C, but not by the laboratory K12 strains. The enzyme converts the non-plant-metabolizable sugar arabitol into xylulose, which is metabolized by plant cells. Rice was transformed with a plant-expression-optimized synthetic gene using Biolistic-mediated transformation. Selection on 2.75% arabitol and 0.25% sucrose yielded a transformation efficiency (9.3%) equal to that obtained with hygromycin (9.2%). Molecular analyses showed that the atlD gene was integrated into the rice genome of selected plants and was inherited in a Mendelian manner. This study indicates that arabitol could serve as an effective means of plant selection.  相似文献   

11.
The lack of alternative selectable markers in crop transformation has been a substantial barrier for commercial application of agricultural biotechnology. We have developed an efficient selection system for wheat transformation using glyphosate-tolerant CP4 and GOX genes as a selectable marker. Immature embryos of the wheat cultivar Bobwhite were bombarded with two separate plasmids harboring the CP4/GOX and GUS genes. After a 1 week delay, the bombarded embryos were transferred to a selection medium containing 2 mM glyphosate. Embryo-derived calli were subcultured onto the same selection medium every 3 weeks consecutively for 9–12 weeks, and were then regenerated and rooted on selection media with lower glyphosate concentrations. Transgenic plants tolerant to glyphosate were recovered. ELISA assay confirmed expression of the CP4 and GOX genes in R0 plants. Southern blot analysis demonstrated that the transgenes were integrated into the wheat genomes and transmitted to the following generation. The use of CP4 and GOX genes as a selectable marker provides an efficient, effective, and alternative transformation selection system for wheat.  相似文献   

12.
M G Lee  L H van der Ploeg 《Gene》1991,105(2):255-257
The hygromycin B (Hy) phosphotransferase-encoding gene (hph), was tested as a selectable marker in the protozoan, Trypanosoma brucei. The hph gene was placed under the control of the promoter of a procyclic acidic repetitive protein-encoding gene, and was integrated by homologous recombination into an intergenic region of the alpha beta-tubulin-encoding gene tandem array of T. brucei. In contrast to many other selectable markers tested, spontaneous Hy resistance was not observed, making Hy a second useful marker for transformation of this protozoan.  相似文献   

13.
New P element plasmids containing the organophosphate-degrading gene opd as a dominant selectable marker were tested as transformation vectors in Drosophila melanogaster. One of these vectors was modified by the addition of the D. melanogaster mini-white gene as a comarker. When transformed individuals were identified using paraoxon selection for opd alone, results were similar to those obtained with mini-white. No false positives were recovered, however one strain contained the mini-white gene but inadequate resistance to survive our screening regimen due to a defective Hsp70-opd gene. Results suggest that Hsp70-opd is similar to mini-white for distinguishing transformed individuals, but does not require time-consuming individual examination. Due to the mode of action of organophosphorus nerve agents, Hsp70-opd has potential as a selectable marker in numerous animals beside fruit flies.  相似文献   

14.
15.
Summary Plant cells are sensitive to the antibiotic bleomycin, a DNA damaging glycopeptide. A bleomycin resistance determinant, located on transposon Tn5 and functional in bacteria, has been cloned in a plant expression vector and introduced into Nicotiana plumbaginifolia using Agrobacterium tumefaciens. The expression of this determinant in plant cells confers resistance to bleomycin and allows selection of transformed plant cells.  相似文献   

16.
We report in this study, the successful deployment of a double mutant acetolactate synthase gene (ALSdm, containing Pro 197 to Ser and Ser 653 to Asn substitutions) as an efficient in vitro selection marker for the development of transgenic plants in Brassica juncea (oilseed mustard). The ALS enzyme is inhibited by two categories of herbicides, sulfonylureas (e.g. chlorsulfuron) and imidazolinones (e.g. imazethapyr), while the mutant forms are resistant to the same. Three different selection agents (kanamycin, chlorsulfuron and imazethapyr) were tested for in vitro selection efficiency in two B. juncea cultivars, RLM198 and Varuna. For both the cultivars, higher transformation frequencies were obtained using chlorsulfuron (3.8 +/- 0.6% and 4.6 +/- 0.9% for RLM198 and Varuna, respectively) and imazethapyr (10.2 +/- 0.7% for RLM198 and 7.8 +/- 1.2% for Varuna) as compared to that obtained on kanamycin (3.1 +/- 0.2% and 2.8 +/- 0.5% for RLM198 and Varuna, respectively). Additionally, transformation frequencies were higher on imazethapyr than on chlorsulfuron for both the cultivars indicating that imidazolinones are better selective agents than sulfonylureas for the selection of mustard transgenics.  相似文献   

17.
 A selection method for transformed cells which does not inhibit regeneration is important for the establishment and optimization of a transformation protocol. We have assessed the 35S-ipt gene from Agrobacterium tumefaciens as a selectable marker gene. The identification of ipt-expressing cells from nontransformed cells enabled morphological selection without the use of kanamycin and also allowed for the elimination of a high proportion of nonexpressing cells. Ipt selection of tobacco leaf discs (Nicotiana tabacum cv. Petite Havana SRI) resulted in a 2.7-fold higher transformation frequency compared to kanamycin selection. Overexpression of the ipt gene favored plant regeneration from transformed cells, and the transformation frequency of the ipt plus kanamycin selection resulted in a 1.6-fold higher transformation frequency than kanamycin selection alone. These results indicate that this procedure might provide a strategy whereby transgenic plants can be efficiently obtained and some of the problems related to the use of antibiotics diminished. Received: 1 November 1999 / Revision received: 26 June 2000 / Accepted: 18 July 2000  相似文献   

18.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum, is a major disease problem in wheat (Triticum aestivum). Genetic engineering holds significant potential to enhance FHB resistance in wheat. Due to the requirement of screening for FHB resistance on flowers at anthesis, the number of screens carried out in a year is limited. Our objective was to evaluate the feasibility of using the rapid-maturing dwarf wheat cultivar Apogee as an alternative genotype for transgenic FHB resistance research. Our transformation efficiency (number of transgenic plants/number of embryos) for Apogee was 1.33%. Apogee was also found to exhibit high FHB susceptibility and reached anthesis within 4 weeks. Interestingly, microsatellite marker haplotype analysis of the chromosome 3BS FHB resistant quantitative trait locus (QTL) region indicated that this region maybe deleted in Apogee. Our results indicate that Apogee is particularly well suited for accelerating transgenic FHB resistance research and transgenic wheat research in general. C.A. Mackintosh and D.F. Garvin contributed equally to the article and should be considered co-first authors  相似文献   

19.
Shoot organogenesis and plant regeneration were readily achieved from cotyledonary petioles and hypocotyls of Brassica carinata. These explants were used for Agrobacterium-mediated transformation. A construct containing the selectable marker genes, neomycin phosphotransferase II, phosphinothricin acetyl transferase and the reporter gene β-glucuronidase, under the control of a tandem 35S promoter, was used for transformation. Although transformation was achieved with both cotyledonary petioles and hypocotyls, cotyledonary petioles responded best, with 30–50% of the explants producing GUS-positive shoots after selection on 25 mg/l kanamycin. Direct selection on L-phosphinothricin also produced resistant shoots but at a lower frequency (1–2%). Received: 9 April 1997 / Revision received: 3 July 1997 / Accepted: 30 July 1997  相似文献   

20.
Organophosphate hydrolase (OPH, E.C. 3.1.8.1; encoded by the bacterial opd gene) provides a new scoreable and selectable genetic marker system for use in plant cell culture and regenerated plant tissue. OPH hydrolyzes a wide range of substrates that produce visually detectable products, which can be readily quantified in biological tissues. A variety of different OP compounds, both herbicides and pesticides, have been identified as acceptable enzymatic substrates, which can be used to generate transgenic markers for various types of plant tissues. For example, transgenic leaf tissue was easily differentiated from non-transgenic tissue by a simple fluorescent assay utilizing the OP insecticide coroxon. Transformed callus and intact whole seed could be easily distinguished from non-transformed tissue using novel non-destructive methods which allowed callus or seeds to grow and/or to germinate after phenotypic scoring with non-herbicidal OP insecticides such as paraoxon. In addition to being used as a scoreable phenotypic markers with various OP pesticides, the OP compounds Haloxon and Bensulide (Bensumec-4LF) were effective as positive selection agents for callus and germinating seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号