首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kubigsteltig II  Weiler EW 《Planta》2003,217(5):748-757
Allene oxide synthase (AOS) catalyzes the entrance reaction in the biosynthesis of the octadecanoids 12-oxophytodienoic acid (OPDA) and jasmonic acid (JA). The enzyme is feedback-regulated by JA and thus a target of the JA-signalling pathway. A fusion genetic approach was used to isolate mutants in this signalling pathway. Seeds from transgenic Arabidopsis thaliana plants expressing the Escherichia coli uidA gene encoding beta-glucuronidase (GUS) under the control of the AOS promoter were mutagenized with ethylmethane sulfonate and the progeny was screened for individuals exhibiting constitutive expression of uidA in the absence of an added octadecanoid. From 21,000 mutagenized plants, 8 lines showing constitutive AOS expression were obtained. The mutant lines were characterized further and fell into four classes, I to IV. All showed signs of growth inhibition encompassing both shoot and root systems, and accumulated higher than normal levels of OPDA. Mutants belonging to classes I and IV failed to set seeds due to defects in flower development which prevented self-pollination. One mutant, designated cas1, was characterized in more detail and showed, in addition to elevated levels of AOS mRNA, AOS polypeptide, OPDA, and JA, constitutive expression of JA-responsive genes ( VSP2, PDF1.2). The cas1 mutation is recessive and affects a single locus. Using cleaved amplified polymorphic sequences (CAPS) and simple sequence length polymorphisms (SSLP), the mutated gene was mapped to chromosome IV next to the SSLP marker CIW7.  相似文献   

2.
Berberis buxifolia Lam., known as “Calafate”, is a plant native to Argentina that exhibits antimicrobial activity. This biological activity is attributed to the isoquinoline alkaloid berberine. The aim of this research was to test the antimicrobial properties of different extracts of this species, taking berberine as the reference molecule, and to examine if the expression of bacterial multidrug resistance (MDR) efflux pumps could be responsible for possible resistance mechanisms. To this end, a wild-type and a mutant strain of Staphylococcus aureus with a defective MDR efflux pump were used and the minimum inhibitory concentrations of the extracts were determined. The studies were carried out with infusions of in vivo shoots and “Calafate” commercial tea, as well as with the media derived from shoot cultures incubated with different plant growth regulators (thidiazuron, picloram, and jasmonic acid). As far as antimicrobial activity is concerned, all the extracts tested were significantly more effective than berberine standard. “Calafate” commercial tea and shoot tea had inhibitory concentrations similar to the one observed for ampicillin standard. The media from the shoot cultures, however, were significantly more effective than all the others, particularly the one derived from jasmonic acid, suggesting the presence of compounds that could be acting synergistically with berberine. There were no differences in antimicrobial activity against the wild-type and the mutant S. aureus; no definite conclusions could be drawn concerning the relationship between MDR pumps and possible pathogen resistance to extracts of B. buxifolia.  相似文献   

3.
4.
Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.  相似文献   

5.
Zhu YJ  Agbayani R  Moore PH 《Planta》2007,226(1):87-97
Phytophthora spp., some of the more important casual agents of plant diseases, are responsible for heavy economic losses worldwide. Plant defensins have been introduced as transgenes into a range of species to increase host resistance to pathogens to which they were originally susceptible. However, the effectiveness and mechanism of interaction of the defensins with Phytophthora spp. have not been clearly characterized in planta. In this study, we expressed the Dahlia merckii defensin, DmAMP1, in papaya (Carica papaya L.), a plant highly susceptible to a root, stem, and fruit rot disease caused by Phytophthora palmivora. Extracts of total leaf proteins from transformed plants inhibited growth of Phytophthora in vitro and discs cut from the leaves of transformed plants inhibited growth of Phytophthora in a bioassay. Results from our greenhouse inoculation experiments demonstrate that expressing the DmAMP1 gene in papaya plants increased resistance against P. palmivora and that this increased resistance was associated with reduced hyphae growth of P. palmivora at the infection sites. The inhibitory effects of DmAMP1 expression in papaya suggest this approach has good potential to impart transgenic resistance against Phytophthora in papaya.  相似文献   

6.
The recent cloning of several agronomically important genes has facilitated the development of functional markers. These markers reside within the target genes themselves and can be used with great reliability and efficiency to identify favorable alleles in a breeding program. Bacterial blight (BB) is a severe rice disease throughout the world that is controlled primarily through use of resistant cultivars. xa5 is a race-specific, recessive gene mediating resistance to BB. It is widely used in rice breeding programs throughout the tropics. Due to its recessive nature, phenotypic selection for xa5-mediated resistance is both slow and costly. Previously, marker assisted selection (MAS) for this resistance gene was not efficient because it involved markers that were only indirectly linked to xa5 and ran the risk of being separated from the trait by recombination. Recently, the cloning of the gene underlying this trait made it possible to develop functional markers. Here we present a set of CAPS markers for easy, quick and direct identification of cultivars or progeny carrying xa5-mediated resistance and provide evidence that these markers are 100% predictive of the presence of the xa5 allele. These markers are expected to enhance the reliability and cost-effectiveness of MAS for xa5-mediated resistance.  相似文献   

7.
Introduction of more durable resistance against Phytophthora infestans causing late blight into the cultivated potato is of importance for sustainable agriculture. We identified a new monogenically inherited resistance locus that is localized on chromosome 4. The resistance is derived from an ABPT clone, which is originally a complex quadruple hybrid in which Solanum acaule, S. bulbocastanum, S. phureja and S. tuberosum were involved. Resistance data of the original resistant accessions of the wild species and analysis of mobility of AFLP markers linked to the resistance locus suggest that the resistance locus is originating from S. bulbocastanum. A population of 1383 genotypes was screened with two AFLP markers flanking the Rpi-abpt locus and 98 recombinants were identified. An accurate high-resolution map was constructed and the Rpi-abpt locus was localized in a 0.5 cM interval. One AFLP marker was found to co-segregate with the Rpi-abpt locus. Its DNA sequence was highly similar with sequences found on a tomato BAC containing several resistance gene analogues on chromosome 4 and its translated protein sequence appeared to be homologous to several disease resistance related proteins. The results indicated that the Rpi-abpt gene is a member of an R gene cluster.  相似文献   

8.
9.
Plants generally deal with biotic or abiotic stresses by altering components as for example cell wall constituents and metabolites. Infection by Phytophthora infestans, the causal agent of late blight, constitutes a stress condition for the plants and they react to it with changes arising in their metabolism depending on the resistance level of the plants. The present work compares two potato hybrids differing in their level of horizontal resistance to late blight. Carbohydrate content in stems and leaves of infected and uninfected plants was determined by HPLC. Some carbohydrates accumulated in the stems of the resistant hybrid infected by P. infestans, whereas they remained unchanged in the susceptible hybrid. On the other hand, in the leaves, these carbohydrates accumulated only in the infected susceptible hybrid.  相似文献   

10.
11.
12.
13.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

14.
Birch J  Ellis SA 《Immunogenetics》2007,59(4):273-280
Natural killer cell responses are controlled to a large extent by the interaction of an array of inhibitory and activating receptors with their ligands. The mostly nonpolymorphic CD94/NKG2 receptors in both humans and mice were shown to recognize a single nonclassical MHC class I molecule in each case. In this paper, we describe the CD94/NKG2 gene family in cattle. NKG2 and CD94 sequences were amplified from cDNA derived from four animals. Four CD94 sequences, ten NKG2A, and three NKG2C sequences were identified in total. In contrast to human, we show that cattle have multiple distinct NKG2A genes, some of which show minor allelic variation. All of the sequences designated NKG2A have two tyrosine-based inhibitory motifs in the cytoplasmic domain and one putative gene has, in addition, a charged residue in the transmembrane domain. NKG2C appears to be essentially monomorphic in cattle. All of the NKG2A sequences are similar apart from NKG2A-01, which, in contrast, shares the majority of its carbohydrate recognition domain with NKG2-C. Most of the genes appear to generate multiple alternatively spliced forms. These findings suggest that the CD94/NKG2A heterodimers in cattle, in contrast to other species, are binding several different ligands. Because NKG2C is not polymorphic, this raises questions as to the combined functional capacity of the CD94/NKG2 gene families in cattle.  相似文献   

15.
16.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

17.
A gene cassette, p35S-CNO, was designed to express three gene products driven by a single constitutive CaMV 35S promoter. The individual coding regions were linked in frame to produce a single polyprotein, using spacer sequences encoding a specific heptapeptide cleavage recognition site (ENLYFQS) for the nuclear-inclusion-a (NIa) proteinase of tobacco etch virus (TEV). The protein coding sequences used were: a Trichoderma harzinum endochitinase, a truncated NIa proteinase of TEV, and a wheat oxalate oxidase. When p35S-CNO construct was tested in Arabidopsis thaliana, the polyprotein was properly cleaved after translation and the products exhibited functional enzymatic activity in vivo.Revisions requested 17 January 2005; Revisions received 17 January 2005  相似文献   

18.
Dong HP  Yu H  Bao Z  Guo X  Peng J  Yao Z  Chen G  Qu S  Dong H 《Planta》2005,221(3):313-327
HrpN, a protein produced by the plant pathogenic bacterium Erwinia amylovora, has been shown to stimulate plant growth and resistance to pathogens and insects. Here we report that HrpN activates abscisic acid (ABA) signalling to induce drought tolerance (DT) in Arabidopsis thaliana L. plants grown with water stress. Spraying wild-type plants with HrpN-promoted stomatal closure decreased leaf transpiration rate, increased moisture and proline levels in leaves, and alleviated extents of damage to cell membranes and plant drought symptoms caused by water deficiency. In plants treated with HrpN, ABA levels increased; expression of several ABA-signalling regulatory genes and the important effector gene rd29B was induced or enhanced. Induced expression of rd29B, promotion of stomatal closure, and reduction in drought severity were observed in the abi1-1 mutant, which has a defect in the phosphatase ABI1, after HrpN was applied. In contrast, HrpN failed to induce these responses in the abi2-1 mutant, which is impaired in the phosphatase ABI2. Inhibiting wild-type plants to synthesize ABA eliminated the role of HrpN in promoting stomatal closure and reducing drought severity. Moreover, resistance to Pseudomonas syringae developed in abi2-1 as in wild-type plants following treatment with HrpN. Thus, an ABI2-dependent ABA signalling pathway is responsible for the induction of DT but does not affect pathogen defence under the circumstances of this study.Hong-Ping Dong and Haiqin Yu contributed equally to this study and are regarded as joint first authors.  相似文献   

19.
20.
Abscisic acid (ABA) has been implicated in determining the outcome of interactions between many plants and their pathogens. We had previously shown that increased concentrations of ABA within leaves of Arabidopsis induced susceptibility towards an avirulent strain of Pseudomonas syringae pathovar (pv.) tomato. We now show that ABA induces susceptibility via suppression of the accumulation of components crucial for a resistance response. Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction but reduced when plants were treated with ABA. The reduction in lignin and salicylic acid production was independent of the development of the hypersensitive response (HR), indicating that, in this host-pathogen system, HR is not required for resistance. Genome-wide gene expression analysis using microarrays showed that treatment with ABA suppressed the expression of many defence-related genes, including those important for phenylpropanoid biosynthesis and those encoding resistance-related proteins. Together, these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae pv. tomato is regulated by ABA. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号