首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
Salinity is an important limiting environmental factor for rapeseed production worldwide. In this study, we assessed the extent and pattern of DNA damages caused by salt stress in rapeseed plants. Amplified fragment length polymorphism (AFLP) analysis revealed dose-related increases in sequence alterations in plantlets exposed to 10-1000 mmol/L sodium chloride. In addition, individual plantlets exposed to the same salt concentration showed different AFLP and selected region amplified polymorphism banding patterns. These observations suggested that DNA mutation in response to salt stress was random in the genome and the effect was dose-dependant. DNA methylation changes in response to salt stress were also evaluated by methylation sensitive amplified polymorphism (MSAP). Three types of MSAP bands were recovered. Type Ⅰ bands were observed with both isoschizomers Hpa Ⅱ and Msp Ⅰ, while type Ⅱ and type Ⅲ bands were observed only with Hpa Ⅱ and Msp Ⅰ, respectively. Extensive changes in types of MSAP bands after NaCI treatments were observed, including appearance and disappearance of type Ⅰ, Ⅱ and Ⅲ bands, as well as exchanges between either type Ⅰand type Ⅱ or type Ⅰ and type Ⅲ bands. An increase of 0.2-17.6% cytosine methylated CCGG sites were detected in plantlets exposed to 10- 200 mmol/L salt compared to the control, and these changes included both de novo methylation and demethylation events. Nine methylation related fragments were also recovered and sequenced, and one sharing a high sequence homology with the ethylene responsive element binding factor was identified. These results demonstrated clear DNA genetic and epigenetic alterations in planUets as a response to salt stress, and these changes may suggest a mechanism for plants adaptation under salt stress.  相似文献   

3.
Variation of cytosine methylation in 57 sweet orange cultivars   总被引:1,自引:0,他引:1  
Sweet orange is an important group of citrus cultivars, which includes a number of bud sport cultivars. Little is known about the CpG methylation status of the CCGG sequences in the orange genome. In this study, methylation-sensitive amplification polymorphism (MSAP), based on the application of isoschizomers (Hpa II and Msp I), was first used to analyze cytosine methylation patterns in 57 orange cultivars that were not fully differentiated by regular DNA molecular markers. Three types of bands were generated from ten primer pairs. Type I bands were present following restriction with Eco RI + Hpa II and Eco RI + Msp I; type II or type III were present only following restriction with either Eco RI + Hpa II or with Eco RI + Msp I. The total number of these three types of bands was 802, 72, and 157, respectively. Among these, the number of polymorphic bands were 244 (30.2%), 23 (31.9%), and 32 (20.4%), in type I, II and III, respectively. The methylation patterns of these 57 cultivars are discussed and assessed by dendrograms derived from the analysis of polymorphic MSAP bands. The distribution of polymorphic bands of the above three types demonstrate the methylation patterns and frequency at the cytosine loci. We suggest that methylation events could be more frequent than demethylation events, and that the methylation patterns maybe associated with phenotypic traits.  相似文献   

4.
Guo WL  Wu R  Zhang YF  Liu XM  Wang HY  Gong L  Zhang ZH  Liu B 《Plant cell reports》2007,26(8):1297-1307
We have reported recently that tissue culture induced a high level of genetic variation at the primary nucleotide sequence in regenerants of medicinal plant Codonopsis lanceolata. It is not known, however, whether epigenetic variation in the form of alteration in DNA methylation also occurred in these plants. Here, we investigated possible alterations in level and pattern of cytosine methylation at the CCGG sites in the same set of regenerants relative to the donor plant, by the MSAP method employing a pair of isoschizomers, HpaII and MspI, which recognize the same restriction site but are differentially sensitive to cytosine methylation at the CCGG sites. A total of 1,674 MSAP profiles were resolved using 39 primer combinations. Of these, 177 (10.5%) profiles were polymorphic among the regenerants and/or between the regenerant(s) and the donor plant, in EcoRI + HpaII or EcoRI + MspI digest but not in both, indicating alteration in cytosine methylation patterns of specific loci, though their estimated total level of methylation remained more or less the same as the donor plant. Gel blot analysis validated most of the variant MSAP profiles as bona fide alteration in methylation patterns. Correlation analysis between the MSAP data and the previously reported ISSR and RAPD data revealed significant correlations, suggesting their possible intrinsic interrelatedness. Thirty-seven typical variant MSAP profiles were isolated and sequenced, of which 5 showed significant homology to known-function genes, 2 to chloroplast sequences, whilst the rest 30 did not find a match in the database. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. W. L. Guo and R. Wu contributed equally to this work.  相似文献   

5.
Methylation of DNA is important for the epigenetic silencing of repetitive DNA in plant genomes. Knowledge about the cytosine methylation status of satellite DNAs, a major class of repetitive DNA, is scarce. One reason for this is that arrays of tandemly arranged sequences are usually collapsed in next‐generation sequencing assemblies. We applied strategies to overcome this limitation and quantified the level of cytosine methylation and its pattern in three satellite families of sugar beet (Beta vulgaris) which differ in their abundance, chromosomal localization and monomer size. We visualized methylation levels along pachytene chromosomes with respect to small satellite loci at maximum resolution using chromosome‐wide fluorescent in situ hybridization complemented with immunostaining and super‐resolution microscopy. Only reduced methylation of many satellite arrays was obtained. To investigate methylation at the nucleotide level we performed bisulfite sequencing of 1569 satellite sequences. We found that the level of methylation of cytosine strongly depends on the sequence context: cytosines in the CHH motif show lower methylation (44–52%), while CG and CHG motifs are more strongly methylated. This affects the overall methylation of satellite sequences because CHH occurs frequently while CG and CHG are rare or even absent in the satellite arrays investigated. Evidently, CHH is the major target for modulation of the cytosine methylation level of adjacent monomers within individual arrays and contributes to their epigenetic function. This strongly indicates that asymmetric cytosine methylation plays a role in the epigenetic modification of satellite repeats in plant genomes.  相似文献   

6.
The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome‐wide cytosine methylation in the sugar beet genome was studied in leaves and leaf‐derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome‐wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves.  相似文献   

7.
The propagation of plants through tissue culture can induce a variety of genetic and epigenetic changes. Variation in DNA methylation has been proposed as a mechanism that may explain at least a part of these changes. In the present study, the methylation of tomato callus DNA was compared with that of leaf DNA, from control or regenerated plants, at MspI/HpaII sites around five middle-repetitive sequences. Although the methylation of the internal cytosine in the recognition sequence CCGG varied from zero to nearly full methylation, depending on the probe used, no differences were found between callus and leaf DNA. For the external cytosine, small differences were revealed between leaf and callus DNA with two probes, but no polymorphisms were detected among DNA samples of calli or DNA samples of leaves of regenerated plants. When callus DNA cut with HindIII was studied with one of the probes, H9D9, most of the signal was found in high-molecular-weight DNA, as opposed to control leaf DNA where almost all the signal was in a fragment of 530 bp. Also, an extra fragment of 630 bp was found in the callus DNA that was not present in control leaf DNA. Among leaves of plants regenerated from tissue culture, the 630-bp fragment was found in 10 of 68 regenerated plants. This 630-bp fragment was present among progeny of only 4 of these 10 plants after selfing, i.e. it was partly inherited. In these cases, the fragment was not found in all progeny plants, indicating heterozygosity of the regenerated plants. The data are interpreted as indicating that a HindIII site becomes methylated in callus tissue, and that some of this methylation persists in regenerated plants and is partly transmitted to their progeny.  相似文献   

8.
For a better understanding of epigenetic regulation of cell differentiation, it is important to analyze DNA methylation at a specific site. Although previous studies described methylation of isolated DNA extracted from cells and tissues using a combination of appropriate restriction endonucleases, no application to tissue cell level has been reported. Here, we report a new method, named histo endonuclease-linked detection of methylation sites of DNA (HELMET), designed to detect methylation sites of DNA with a specific sequences in a tissue section. In this study, we examined changes in the methylation level of CCGG sites during spermatogenesis in paraffin-embedded sections of mouse testis. In principle, the 3′-OH ends of DNA strand breaks in a section were firstly labeled with a mixture of dideoxynucleotides by terminal deoxynucleotidyl transferase (TdT), not to be further elongated by TdT. Then the section was digested with Hpa II, resulting in cutting the center portion of non-methylated CCGG. The cutting sites were labeled with biotin-16-dUTP by TdT. Next, the section was treated with Msp I, which can cut the CCGG sequence irrespective of the presence or absence of methylation of the second cytosine, and the cutting sites were labeled with digoxigenin-11-dUTP by TdT. Finally, both biotin and digoxigenin were visualized by enzyme- or fluorescence-immunohistochemistry. Using this method, we found hypermethylation of CCGG sites in most of the germ cells although non-methylated CCGG were colocalized in elongated spermatids. Interestingly, some TUNEL-positive germ cells, which are frequent in mammalian spermatogenesis, became markedly Hpa II-reactive, indicating that the CCGG sites may be demethylated during apoptosis. An erratum to this article can be found at  相似文献   

9.
The tomato nuclear genome was determined to have a G+C content of 37% which is among the lowest reported for any plant species. Non-coding regions have a G+C content even lower (32% average) whereas coding regions are considerably richer in G+C (46%).5-methyl cytosine was the only modified base detected and on average 23% of the cytosine residues are methylated. Immature tissues and protoplasts have significantly lower levels of cytosine methylation (average 20%) than mature tissues (average 25%). Mature pollen has an intermediate level of methylation (22%). Seeds gave the highest value (27%), suggesting de novo methylation after pollination and during seed development.Based on isoschizomer studies we estimate 55% of the CpG target sites (detected by Msp I/Hpa II) and 85% of the CpNpG target sites (detected by Bst NI/Eco RI)are methylated. Unmethylated target sites (both CpG and CpNpG) are not randomly distributed throughout the genome, but frequently occur in clusters. These clusters resemble CpG islands recently reported in maize and tobacco.The low G+C content and high levels of cytosine methylation in tomato may be due to previous transitions of 5mCT. This is supported by the fact that G+C levels are lowest in non-coding portions of the genome in which selection is relaxed and thus transitions are more likely to be tolerated. This hypothesis is also supported by the general deficiency of methylation target sites in the tomato genome, especially in non-coding regions.Using methylation isoschizomers and RFLP analysis we have also determined that polymorphism between plants, for cytosine methylation at allelic sites, is common in tomato. Comparing DNA from two tomato species, 20% of the polymorphisms detected by Bst NI/Eco RII could be attributed to differential methylation at the CpNpG target sites. With Msp I/Hpa II, 50% of the polymorphisms were attributable to methylation (CpG and CpNpG sites). Moreover, these polymorphisms were demonstrated to be inherited in a mendelian fashion and to co-segregate with the methylation target site and thus do not represent variation for transacting factors that might be involved in methylation of DNA. The potential role of heritable methylation polymorphism in evolution of gene regulation and in RFLP studies is discussed.  相似文献   

10.
DNA methylation of two repetitive sequences in tobacco nuclear genome was studied in the course ofin vitro dedifferentiation and differentiation. Using 5-mC sensitivè restriction enzymes and DNA/DNA hybridization with 25S-rDNA probe it has been shown that during the early phase of callus induction prominent changes in the methylation pattern occur which are stably maintained during subsequent callus growth. The following protoplast recovery and plant regeneration have again displayed some more modifications of the methylation status. Comparing the patterns of R0 plants with the original plant material and the calli it can be assumed that both share in the resulting methylation status. The experiments analyzing the HRS60 family of non-transcribed highly repetitive sequences have displayed a quite monotonous methylation status thus indicating no random methylation perturbations in silent DNA sequences.  相似文献   

11.
The biological significance of cytosine methylation is as yet incompletely understood, but substantial and growing evidence strongly suggests that perturbation of methylation patterns, resulting from the infidelity of DNA cytosine methyltransferase, is an important component of the development of human cancer. We have developed a novel in vitro assay that allows us to quantitatively determine the DNA substrate preferences of cytosine methylases. This approach, which we call mass tagging, involves the labeling of target cytosine residues in synthetic DNA duplexes with stable isotopes, such as 15N. Methylation is then measured by the formation of 5-methylcytosine (5mC) by gas chromatography/mass spectrometry. The DNA substrate selectivity is determined from the mass spectrum of the product 5mC. With the non-symmetrical duplex DNA substrate examined in this study we find that the bacterial methyltransferase HpaII (duplex DNA recognition sequence CCGG) methylates the one methylatable cytosine of each strand similarly. Introduction of an A-C mispair at the methylation site shifts methylation exclusively to the mispaired cytosine residue. In direct competition assays with HpaII methylase we observe that the mispaired substrate is methylated more extensively than the fully complementary, normal substrate, although both have one HpaII methylation site. Through the use of this approach we will be able to learn more about the mechanisms by which methylation patterns can become altered.  相似文献   

12.
13.
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation‐sensitive amplification polymorphism (MS‐AFLP or MSAP) have been often used to assess methyl‐cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome‐wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome‐wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl‐cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context‐specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation‐based epigenetic processes in nonmodel plants.  相似文献   

14.
The best known and most thoroughly studied epigenetic phenomenon is DNA methylation, which plays an important role in regulating gene expression during plant regeneration and development. In this study, the methylation-sensitive amplified polymorphism (MSAP) technique was carried out to determine differences in methylation profiles between two forms of protocorm-like bodies (PLBs), continuously proliferating PLBs (cPLBs) and spontaneously-differenting PLBs (sdPLBs), derived from cultures of Cymbidium hybridium. A total of 72 selective primer combinations were used to assess the status of cytosine methylation of DNA in these tissues. Of 4,440 fragments obtained 911 fragments, each representing a recognition site cleaved by one or both of the isoschizomers (Hpa II and Msp I), were amplified and were significantly different between the two forms of PLBs. Frequency of total and full-methylation of cPLBs and sdPLBs were 26.7/12.2%, 24.1/11.1%, respectively. In addition, 14 types of MSAP patterns detected in the two forms of PLBs belonged to two classes, type I and II. Sequencing of 14 differentially methylated fragments and their subsequent blast search revealed that cytosine methylated 5′-CCGG-3′ sequences were equally distributed in the coding and non-coding regions. Southern blotting was conducted to verify the methylation polymorphism.  相似文献   

15.
Cytosine methylation changes (hyper- or hypomethylation) in centromeric and telomeric sequences were observed in all three studied rice introgression lines containing DNA from wild rice, Zizania latifolia Griseb. The changed genomic Southern hybridization patterns were complex and non-concordant between a pair of isoschizomers (HpaII/MspI) digests, indicating methylation modifications at both the inner and outer cytosines of the CCGG sites. The changed patterns were inherited through generations. Possible mechanism for the methylation changes and their potential implications for the phenotypic variation and genome organization are discussed.  相似文献   

16.

Background

Cytosine methylation of DNA is conserved across eukaryotes and plays important functional roles regulating gene expression during differentiation and development in animals, plants and fungi. Hydroxymethylation was recently identified as another epigenetic modification marking genes important for pluripotency in embryonic stem cells.

Results

Here we describe de novo cytosine methylation and hydroxymethylation in the ciliate Oxytricha trifallax. These DNA modifications occur only during nuclear development and programmed genome rearrangement. We detect methylcytosine and hydroxymethylcytosine directly by high-resolution nano-flow UPLC mass spectrometry, and indirectly by immunofluorescence, methyl-DNA immunoprecipitation and bisulfite sequencing. We describe these modifications in three classes of eliminated DNA: germline-limited transposons and satellite repeats, aberrant DNA rearrangements, and DNA from the parental genome undergoing degradation. Methylation and hydroxymethylation generally occur on the same sequence elements, modifying cytosines in all sequence contexts. We show that the DNA methyltransferase-inhibiting drugs azacitidine and decitabine induce demethylation of both somatic and germline sequence elements during genome rearrangements, with consequent elevated levels of germline-limited repetitive elements in exconjugant cells.

Conclusions

These data strongly support a functional link between cytosine DNA methylation/hydroxymethylation and DNA elimination. We identify a motif strongly enriched in methylated/hydroxymethylated regions, and we propose that this motif recruits DNA modification machinery to specific chromosomes in the parental macronucleus. No recognizable methyltransferase enzyme has yet been described in O. trifallax, raising the possibility that it might employ a novel cytosine methylation machinery to mark DNA sequences for elimination during genome rearrangements.  相似文献   

17.
18.
DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we isolated NtMET1 from Nicotiana tabacum cv. Havana (SR1) and obtain transgenic plants that reduced MET1 expression level with the double-strand RNA (dsRNA) MET1 gene. Transgenic tobacco plants showed dwarf and abnormal flower development when compared with the wild type. Using methylation-sensitive amplified polymorphism (MSAP) analysis, the patterns of cytosine methylation in transformed plants and the wild type were compared. MseI/HpaII selection primers showed an interesting polymorphism, and 153 DNA bands of interest were detected. Among these, 30 selective fragments were sequenced and analyzed with a BLAST search by successful MSAP modifications. The homology search showed that the transposons and tandem repeated sequences were related to the phenotypes. These results suggested that the decreased degree of methylation by dsRNA strategy caused abnormal growth and development in N. tabacum.  相似文献   

19.
In the chicken genome there are middle repetitive DNA sequences with a clustered organization. Each cluster is composed of members of different families of repeated DNA sequences and usually contains only one member of each family. Many clusters have the same assortment of repeated sequences but they are in scrambled order from cluster to cluster. These clusters usually exceed 20 × 103 bases in length and comprise at least 10% of the repeated DNA of the chicken. The repeated sequences that are cluster components are extensively methylated. Methylation was detected by comparing HpaII and MspI digests of total DNA, where the occurrence of the sequence C-m5C-G-G is indicated when HpaII (cleaves C-C-G-G) fragments are larger than those generated by MspI (cleaves C-m5C-G-G or C-C-G-G). In hybridization experiments with Southern (1975) blots of total DNA digested with either HpaII or MspI, the cloned probes representing clustered repeated sequences showed a dramatic difference in the lengths of restriction fragments detected in the two digests. Many of the sequences that comprise these clusters are methylated in most of their genomic occurrences. There are patterns of methylation that are reproduced faithfully from copy to copy. The overall distribution of methylation within clusters seems to be regional, with long methylated DNA segments interrupted by specific undermethylated regions.  相似文献   

20.
Analysis of target sequences of DDM1s in Brassica rapa by MSAP   总被引:1,自引:0,他引:1  
DNA methylation is an important epigenetic modification regulating gene expression and transposon silencing. Although epigenetic regulation is involved in some agricultural traits, there has been relatively little research on epigenetic modifications of genes in Brassica rapa, which includes many important vegetables. In B. rapa, orthologs of DDM1, a chromatin remodeling factor required for maintenance of DNA methylation, have been characterized and DNA hypomethylated knock-down plants by RNAi (ddm1-RNAi plants) have been generated. In this study, we investigated differences of DNA methylation status at the genome-wide level between a wild-type (WT) plant and a ddm1-RNAi plant by methylation-sensitive amplification polymorphism (MSAP) analysis. MSAP analysis detected changes of DNA methylation of many repetitive sequences in the ddm1-RNAi plant. Search for body methylated regions in the WT plant revealed no difference in gene body methylation levels between the WT plant and the ddm1-RNAi plant. These results indicate that repetitive sequences are preferentially methylated by DDM1 genes in B. rapa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号