首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-8 production caused by leptin in both rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). RASF and OASF expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-8 production. Leptin-mediated IL-8 production was attenuated by OBRl receptor antisense oligonucleotide, JAK2 inhibitor or STAT3 small interference RNA (siRNA). Transfection with insulin receptor substrate (IRS)-1 siRNA or dominant-negative mutant of p85 and Akt or pretreatment with phosphatidylinositol 3-kinase inhibitor (Ly294002 and wortmannin), Akt inhibitor, NF-kappaB inhibitor (PDTC) and NF-kappaB inhibitor peptide also inhibited the potentiating action of leptin. Stimulation of RASF with leptin activated IkappaB kinase alpha/beta (IKK alpha/beta), p65 phosphorylation at Ser(276), p65 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Moreover, pretreatment with p300 inhibitor (curcumin) also blocked IL-8 expression. The binding of p65 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 acetylation on the IL-8 promoter was enhanced by leptin, which was inhibited by wortmannin, Akt inhibitor or IRS-1 siRNA. These results suggest that leptin increased IL-8 production in synovial fibroblast via the OBRl/JAK2/STAT3 pathway, as well as the activation of IRS1/PI3K/Akt/NF-kappaB-dependent pathway and the subsequent recruitment of p300.  相似文献   

7.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

8.
9.
10.
VEGF-KDR/Flk-1 signal utilizes the phospholipase C-gamma-protein kinase C (PKC)-Raf-MEK-ERK pathway as the major signaling pathway to induce gene expression and cPLA2 phosphorylation. However, the spatio-temporal activation of a specific PKC isoform induced by VEGF-KDR signal has not been clarified. We used HEK293T (human embryonic kidney) cells expressing transiently KDR to examine the activation mechanism of PKC. PKC specific inhibitors and human PKCdelta knock-down using siRNA method showed that PKCdelta played an important role in VEGF-KDR-induced ERK activation. Myristoylated alanine-rich C-kinase substrate (MARCKS) translocates from the plasma membrane to the cytoplasm depending upon phosphorylation by PKC. Translocation of MARCKS-GFP induced by VEGF-KDR stimulus was blocked by rottlerin, a PKCdelta specific inhibitor, or human PKCdelta siRNA. VEGF-KDR stimulation did not induce ERK phosphorylation in human PKCdelta-knockdown HEK293T cells, but co-expression of rat PKCdelta-GFP recovered the ERK phosphorylation. Y311/332F mutant of rat PKCdelta-GFP which cannot be activated by tyrosine-phosphorylation but activated by DAG recovered the ERK phosphorylation, while C1B-deletion mutant of rat PKCdelta-GFP, which can be activated by tyrosine-phosphorylation but not by DAG, failed to recover the ERK phosphorylation in human PKCdelta-knockdown HEK293T cell. These results indicate that PKCdelta is involved in VEGF-KDR-induced ERK activation via C1B domain.  相似文献   

11.
Recent studies have implicated inhibitor of kappaB kinase (IKK) in mediating fatty acid (FA)-induced insulin resistance. How IKK causes these effects is unknown. The present study addressed the role of nuclear factor kappaB (NFkappaB), the distal target of IKK activity, in FA-induced insulin resistance in L6 myotubes, an in vitro skeletal muscle model. A 6-h exposure of myotubes to the saturated FA palmitate reduced insulin-stimulated glucose uptake by approximately 30%, phosphatidylinositol-3 kinase and protein kinase B phosphorylation by approximately 40%, and stimulated inhibitor of kappaBalpha degradation and the nuclear translocation of NFkappaB. On the other hand, the Omega-3 polyunsaturated FA linolenate neither induced insulin resistance nor promoted nuclear localization of NFkappaB. Supporting the hypothesis that IKK acts through NFkappaB to cause insulin resistance, the IKK inhibitors acetylsalicylate and parthenolide prevented FA-induced reductions in insulin-stimulated glucose uptake and NFkappaB nuclear translocation. Most importantly, NFkappaB SN50, a cell-permeable peptide that inhibits NFkappaB nuclear translocation downstream of IKK, was sufficient to prevent palmitate-induced reductions in insulin-stimulated glucose uptake. Acetylsalicylate, but not NFkappaB SN50, prevented FA effects on phosphatidylinositol-3 kinase activity and protein kinase B phosphorylation. We conclude that FAs induce insulin resistance and activates NFkappaB in L6 cells. Furthermore, inhibition of NFkappaB activation, indirectly by preventing IKK activation or directly by inhibiting NFkappaB nuclear translocation, prevents the detrimental effects of palmitate on the metabolic actions of insulin in L6 myotubes.  相似文献   

12.
13.
Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) were not completely understood. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 in RBA-1 cells and cells migration which were attenuated by pretreatment with the inhibitor of receptor tyrosine kinase (Genistein), c-Src (PP1), Jak2 (AG490), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), PKCs (Ro318220), PKCδ (Rottlerin), or NF-κB (Bay11-7082) and transfection with siRNA of c-Src, PDGFR, Akt, PKCδ, ATF2, p65, IKKα, or IKKβ. In addition, thrombin-stimulated c-Src, Jak2, or PDGFR phosphorylation was inhibited by a thrombin inhibitor (PPACK), PP1, AG490, or AG1296. Thrombin further stimulated c-Src and PDGFR complex formation in RBA-1 cells. Thrombin also stimulated Akt and PKCδ phosphorylation and PKCδ translocation which were reduced by PPACK, PP1, AG490, AG1296, or LY294002. We further observed that thrombin markedly stimulated ATF2 or IκBα phosphorylation and NF-κB p65 translocation which were inhibited by Rottlerin or LY294002. Finally, thrombin stimulated in vivo binding of p65 to the MMP-9 promoter, which was reduced by pretreatment with Rottlerin or LY294002. These results concluded that in RBA-1 cells, thrombin activated a c-Src/Jak2/PDGFR/PI3K/Akt/PKCδ pathway, which in turn triggered ATF2 and NF-κB activation and ultimately induced MMP-9 expression associated with cell migration.  相似文献   

14.
15.
UV-induced signal transduction may be involved in tumor promotion and induction of apoptosis. The role of protein kinase C (PKC) in UVB-induced signal transduction is not well understood. This study showed that UVB markedly induced translocation of membrane-associated PKCepsilon and PKCdelta, but not PKCalpha, from cytosol to membrane. Dominant negative mutant (DNM) PKCepsilon or PKCdelta inhibited UVB-induced translocation of PKCepsilon and PKCdelta, respectively. UVB-induced activation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH2-terminal kinases (JNKs) was strongly inhibited by DNM PKCepsilon and PKCdelta, whereas the DNM of PKCalpha was less effective on the UVB-induced phosphorylation of Erks and JNKs. Among the PKC inhibitors used only rottlerin, a selective inhibitor of PKCdelta, markedly inhibited the UVB-induced activation of Erks and JNKs, but not p38 kinases. Safingol, a selective inhibitor for PKCalpha, did not show any inhibitory effect on UVB-induced mitogen-activated protein kinase activation. GF109203X is a stronger inhibitor of classical PKC than novel PKC. Lower concentrations of GF109203X (<10 microM) had no effect on UVB-induced activation of Erks or JNKs. However, at higher concentrations (over 20 microM), GF109203X inhibited UVB-induced activation of JNKs, Erks, and even p38 kinases. Meanwhile, rottlerin and GF109203X markedly inhibited UVB-induced apoptosis of JB6 cells, whereas safingol had little inhibitory effect. DNM-Erk2 cells and PD98059, a selective inhibitor for mitogen-activated protein kinase/extracellular signal-regulated kinase 1 that directly activates Erks, inhibited UVB-induced apoptosis. DNM-JNK1 cells also blocked UVB-induced apoptosis, whereas SB202190, a specific inhibitor for p38 kinases, did not produce the inhibitory effect. These data demonstrate that PKCdelta and PKCepsilon, but not PKCalpha, mediate UVB-induced signal transduction and apoptosis in JB6 cells through activation of Erks and JNKs.  相似文献   

16.
The functional significance of protease-activated receptors (PARs) in endothelial cells is largely undefined, and the intracellular consequences of their activation are poorly understood. Here, we show that the serine protease thrombin, a PAR-1-selective peptide (TFLLRN), and SLIGKV (PAR-2-selective peptide) induce cyclooxygenase-2 (COX-2) protein and mRNA expression in human endothelial cells without modifying COX-1 expression. COX-2 induction was accompanied by sustained production of 6-keto-PGF1alpha, the stable hydrolysis product of prostacyclin, and this was inhibited by indomethacin and the COX-2-selective inhibitor NS398. PAR-1 and PAR-2 stimulation rapidly activated both ERK1/2 and p38MAPK, and pharmacological blockade of MEK with either PD98059 or U0126 or of p38MAPK by SB203580 or SB202190 strongly inhibited thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha formation. Thrombin and peptide agonists of PAR-1 and PAR-2 increased luciferase activity in human umbilical vein endothelial cells infected with an NF-kappaB-dependent luciferase reporter adenovirus, and this, as well as PAR-induced 6-keto-PGF1alpha synthesis, was inhibited by co-infection with adenovirus encoding wild-type or mutated (Y42F) IkappaBalpha. Thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha generation were markedly attenuated by the NF-kappaB inhibitor PG490 and partially inhibited by the proteasome pathway inhibitor MG-132. Activation of PAR-1 or PAR-2 promoted nuclear translocation and phosphorylation of p65-NF-kappaB, and thrombin-induced but not PAR-2-induced p65-NF-kappaB phosphorylation was reduced by inhibition of MEK or p38MAPK. Activation of PAR-4 by AYPGKF increased phosphorylation of ERK1/2 and p38MAPK without modifying NF-kappaB activation or COX-2 induction. Our data show that PAR-1 and PAR-2, but not PAR-4, are coupled with COX-2 expression and sustained endothelial production of vasculoprotective prostacyclin by mechanisms that depend on ERK1/2, p38MAPK, and IkappaBalpha-dependent NF-kappaB activation.  相似文献   

17.
18.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

19.
Our laboratory is interested in understanding the regulation of NADPH oxidase activity in human monocyte/macrophages. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in human neutrophils; however, the regulatory roles of specific isoforms of PKC in phosphorylating particular oxidase components have not been determined. In this study calphostin C, an inhibitor for both novel PKC (including PKCdelta, -epsilon, -theta;, and -eta) and conventional PKC (including PKCalpha and -beta), inhibited both phosphorylation and translocation of p47phox, an essential component of the monocyte NADPH oxidase. In contrast, GF109203X, a selective inhibitor of classical PKC and PKCepsilon, did not affect the phosphorylation or translocation of p47phox, suggesting that PKCdelta, -theta;, or -eta is required. Furthermore, rottlerin (at doses that inhibit PKCdelta activity) inhibited the phosphorylation and translocation of p47phox. Rottlerin also inhibited O2 production at similar doses. In addition to pharmacological inhibitors, PKCdelta-specific antisense oligodeoxyribonucleotides were used. PKCdelta antisense oligodeoxyribonucleotides inhibited the phosphorylation and translocation of p47phox in activated human monocytes. We also show, using the recombinant p47phox-GST fusion protein, that p47phox can serve as a substrate for PKCdelta in vitro. Furthermore, lysate-derived PKCdelta from activated monocytes phosphorylated p47phox in a rottlerin-sensitive manner. Together, these data suggest that PKCdelta plays a pivotal role in stimulating monocyte NADPH oxidase activity through its regulation of the phosphorylation and translocation of p47phox.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号