首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation addresses whether protein expression and function of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban (PLB) correlate in failing and nonfailing human myocardium. SERCA2a activity and protein expression, PLB phosphorylation, and the force-frequency relationship (FFR) have been determined in right atrium (RA) and left ventricle (LV) from nonfailing (NF, n = 12) and terminally failing [dilated cardiomyopathy (DCM), n = 12] human hearts. Only in LV of DCM hearts was SERCA2a activity significantly decreased [maximal turnover rate (V(max)) = 196 +/- 11 and 396 +/- 30 nmol. mg(-1). min(-1) in LV and RA, respectively], whereas protein expression of SERCA2a in the different chambers was unchanged in NF (3.9 +/- 0.3 and 3.2 +/- 0.4 densitometric units in LV and RA, respectively) and DCM hearts (4.8 +/- 0.8 and 3.4 +/- 0.1 densitometric units in LV and RA, respectively). Phosphorylation of PLB was higher in LV than in RA in NF (Ser(16): 180.5 +/- 19.0 vs. 56.8 +/- 6.0 densitometric units; Thr(17): 174.6 +/- 11.2 vs. 37.4 +/- 8.9 densitometric units) and DCM hearts (Ser(16): 132.0 +/- 5.4 vs. 22.4 +/- 3.5 densitometric units; Thr(17): 131.2 +/- 10.9 vs. 9.2 +/- 2.4 densitometric units). SERCA2a function, but not protein expression, correlated well with the functional parameters of the FFR in DCM and NF human hearts. Regulation of SERCA2a function depends on the phosphorylation of PLB at Ser(16) and Thr(17). However, direct SERCA2a regulation might also be affected by an unknown mechanism.  相似文献   

2.
Han X  Yang J  Yang K  Zhao Z  Abendschein DR  Gross RW 《Biochemistry》2007,46(21):6417-6428
Recently, we have identified the dramatic depletion of cardiolipin (CL) in diabetic myocardium 6 weeks after streptozotocin (STZ) injection that was accompanied by increases in triacylglycerol content and multiple changes in polar lipid molecular species. However, after 6 weeks in the diabetic state, the predominant lipid hallmarks of diabetic cardiomyopathy were each present concomitantly, and thus, it was impossible to identify the temporal course of lipid alterations in diabetic myocardium. Using the newly developed enhanced shotgun lipidomics approach, we demonstrated the dramatic loss of abundant CL molecular species in STZ-treated hearts at the very earliest stages of diabetes accompanied by a profound remodeling of the remaining CL molecular species including a 16-fold increase in the content of 18:2-22:6-22:6-22:6 CL. These alterations in CL metabolism occur within days after the induction of the diabetic state and precede the triacylglycerol accumulation manifest in diabetic myocardium. Similarly, in ob/ob mice, a dramatic and progressive redistribution from 18:2 FA-containing CL molecular species to 22:6 FA-containing CL molecular species was also identified. Collectively, these results demonstrate alterations in CL hydrolysis and remodeling at the earliest stages of diabetes and are consistent with a role for alterations in CL content in precipitating mitochondrial dysfunction in diabetic cardiomyopathy.  相似文献   

3.
Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.  相似文献   

4.
5.
6.
Phosphorylation of phospholipids was studied in Langendorff perfused guinea pig hearts subjected to beta-adrenergic stimulation. Hearts were perfused with Krebs-Henseleit buffer containing [32P]Pi and freeze-clamped in a control condition or at the peak of the inotropic response to isoprenaline. 32P incorporation into total phospholipids, individual phospholipids and polyphosphoinositides was analysed in whole tissue homogenates and membranes, enriched in sarcoplasmic reticulum, prepared from the same hearts. Isoprenaline stimulation of the hearts did not result in any significant changes in the levels of phosphate incorporation in the total phospholipid present in cardiac homogenates (11.6 +/- 0.4 nmol of 32P/g for control hearts and 12.4 +/- 0.5 nmol of 32P/g for isoprenaline-treated hearts; n = 6), although there was a significant increase in the degree of phospholipid phosphorylation in sarcoplasmic reticulum (3.5 +/- 0.3 nmol of 32P/mg for control hearts and 6.7 +/- 0.2 nmol of 32P/mg for isoprenaline-treated hearts; n = 6). Analysis of 32P incorporation into individual phospholipids and polyphosphoinositides revealed that isoprenaline stimulation of the hearts was associated with a 2-3-fold increase in the degree of phosphorylation of phosphatidylinositol monophosphate and bisphosphate as well as phosphatidic acid in both cardiac homogenates and sarcoplasmic reticulum membranes. In addition, there was increased phosphate incorporation into phosphatidylinositol in sarcoplasmic reticulum membranes. Thus, perfusion of guinea pig hearts with isoprenaline is associated with increased formation of polyphosphoinositides and these phospholipids may be involved, at least in part, in mediating the effects of beta-adrenergic agents in the mammalian heart.  相似文献   

7.
Type 1 diabetes mellitus reduces lipoprotein lipase (LPL) activity in the heart. The diabetic phenotype of decreased LPL activity in freshly isolated cardiomyocytes persisted after overnight culture (16 h). Total cellular LPL activity was 311+/-56 nmol oleate released x h(-1) x mg(-1) cell protein in diabetic cultured cardiomyocytes compared with 661+/-81 nmol oleate released x h(-1) x mg(-1) cell protein for control cultured cells. Diabetes also resulted in lower heparin-releasable (HR) LPL activity compared with control cells (111+/-25 vs. 432+/-63 nmol x h(-1) x mg(-1) cell protein). In kinetic experiments, the reduction in total cellular LPL and HR-LPL activities in cultured cells from diabetic hearts was due to a decrease in maximal velocity, with no change in apparent Km for substrate (triolein). LPL activity in primary cultures of cardiomyocytes from control rats is stimulated by the combination of insulin (Ins) and dexamethasone (Dex). Overnight treatment of cultured cardiomyocytes from diabetic rats with Ins+Dex elicited an 84% increase in cellular LPL activity (to 572+/-65 nmol x h(-1) x mg(-1) cell protein) and a 194% increase in HR-LPL activity (to 326+/-46 nmol x h(-1) x mg(-1) cell protein). This stimulation occurred at subnanomolar concentrations of the hormones, but neither hormone was effective alone. The amount of immunoreactive LPL protein mass in cultured cardiomyocytes from diabetic hearts was unchanged by Ins+Dex treatment. Addition of oleic acid (60 microM) to the overnight culture medium inhibited the already reduced HR-LPL activity in diabetic cultured cells by 73% (to 30+/-4 nmol x h(-1) x mg(-1) cell protein). The presence of oleic acid also reduced hormone-stimulated HR-LPL activity. Increasing the glucose concentration in the culture medium to 26 mM had no effect on total cellular LPL or HR-LPL activities.  相似文献   

8.
Although ischemic preconditioning induces bioenergetic tolerance and thereby remodels energy metabolism that is crucial for postischemic recovery of the heart, the molecular components associated with preservation of cellular energy production, transfer, and utilization are not fully understood. Here myocardial bioenergetic dynamics were assessed by (18)O-assisted (31)P-NMR spectroscopy in control or preconditioned hearts from wild-type (WT) or Kir6.2-knockout (Kir6.2-KO) mice that lack metabolism-sensing sarcolemmal ATP-sensitive K(+) (K(ATP)) channels. In WT vs. Kir6.2-KO hearts, preconditioning induced a significantly higher total ATP turnover (232 +/- 20 vs. 155 +/- 15 nmol x mg protein(-1) x min(-1)), ATP synthesis rate (58 +/- 3 vs. 46 +/- 3% (18)O labeling of gamma-ATP), and ATP consumption rate (51 +/- 4 vs. 31 +/- 4% (18)O labeling of P(i)) after ischemia-reperfusion. Moreover, preconditioning preserved cardiac creatine kinase-catalyzed phosphotransfer in WT (234 +/- 26 nmol x mg protein(-1) x min(-1)) but not Kir6.2-KO (133 +/- 18 nmol x mg protein(-1) x min(-1)) hearts. In contrast with WT hearts, preconditioning failed to preserve contractile recovery in Kir6.2-KO hearts, as tight coupling between postischemic performance and high-energy phosphoryl transfer was compromised in the K(ATP)-channel-deficient myocardium. Thus intact K(ATP) channels are integral in ischemic preconditioning-induced protection of cellular energetic dynamics and associated cardiac performance.  相似文献   

9.
Myocardial glucose oxidation is markedly reduced in the uncontrolled diabetic. We determined whether this was due to direct biochemical changes in the heart or whether this was due to altered circulating levels of insulin and substrates that can be seen in the diabetic. Isolated working hearts from control or diabetic rats (streptozotocin, 55 mg/kg iv administered 6 wk before study) were aerobically perfused with either 5 mM [(14)C]glucose and 0.4 mM [(3)H]palmitate (low-fat/low-glucose buffer) or 20 mM [(14)C]glucose and 1.2 mM [(3)H]palmitate (high-fat/high-glucose buffer) +/-100 microU/ml insulin. The presence of insulin increased glucose oxidation in control hearts perfused with low-fat/low-glucose buffer from 553 +/- 85 to 1,150 +/- 147 nmol x g dry wt(-1) x min(-1) (P < 0. 05). If control hearts were perfused with high-fat/high-glucose buffer, palmitate oxidation was significantly increased by 112% (P < 0.05), but glucose oxidation decreased to 55% of values seen in the low-fat/low-glucose group (P < 0.05). In diabetic hearts, glucose oxidation was very low in hearts perfused with low-fat/low-glucose buffer (9 +/- 1 nmol x g dry wt(-1) x min(-1)) and was not altered by insulin or high-fat/high-glucose buffer. These results suggest that neither circulating levels of substrates nor insulin was responsible for the reduced glucose oxidation in diabetic hearts. To determine if subcellular changes in the control of fatty acid oxidation contribute to these changes, we measured the activity of three enzymes involved in the control of fatty acid oxidation; AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), and malonyl-CoA decarboxylase (MCD). Although AMPK and ACC activity in control and diabetic hearts was not different, MCD activity and expression in all diabetic rat heart perfusion groups were significantly higher than that seen in corresponding control hearts. These results suggest that an increased MCD activity contributes to the high fatty acid oxidation rates and reduced glucose oxidation rates seen in diabetic rat hearts.  相似文献   

10.
The endothelial cell surface expression of ecto-5'-nucleotidase (E5'N, CD73) is thought to be essential for the extracellular formation of cytoprotective, anti-thrombotic and immunosuppressive adenosine. Decreased E5'N activity may play a role in xenograft acute vascular rejection, preventing accommodation and tolerance mechanisms. We investigated the extent of changes in E5'N activity and other enzymes of purine metabolism in porcine hearts or endothelial cells when exposed to human blood or plasma and studied the role of humoral immunity in this context. Pig hearts, wild type (WT, n = 6) and transgenic (T, n = 5) for human decay accelerating factor (hDAF), were perfused ex vivo with fresh human blood for 4 h. Pig aortic endothelial cells (PAEC) were exposed for 3 h to autologous porcine plasma (PP), normal (NHP) or heat inactivated human plasma (HHP), with and without C1-inhibitor. Enzyme activities were measured in heart or endothelial cell homogenates with an HPLC based procedure. The baseline activity of E5'N in WT and T porcine hearts were 6.60 +/- 0.33 nmol/min/mg protein and 8.54 +/- 2.10 nmol/min/mg protein respectively (P < 0.01). Ex vivo perfusion of pig hearts with fresh human blood for 4 h resulted in a decrease in E5'N activity to 4.01 +/- 0.32 and 4.52 +/- 0.52 nmol/min/mg protein (P < 0.001) in WT and T hearts respectively, despite attenuation of hyperacute rejection in transgenic pigs. The initial PAEC activity of E5'N was 9.10 +/- 1.40 nmol/min/mg protein. Activity decreased to 6.76 +/- 0.57 and 4.58 +/- 0.47 nmol/min/mg protein (P < 0.01) after 3 h exposure of HHP and NHP respectively (P < 0.05), whereas it remained unchanged at 9.62 +/- 0.88 nmol/min/mg protein when incubated with PP controls. C1-inhibitor partially preserved E5'N activity, similar to the effect of HHP. Adenosine deaminase, adenosine kinase and AMP deaminase (other enzymes of purine metabolism) showed a downward trend in activity, but none were statistically significant. We demonstrate a specific decrease in E5'N activity in pig hearts following exposure to human blood which impairs adenosine production resulting in a loss of a cytoprotective phenotype, contributing to xenograft rejection. This effect is triggered by human humoral immune responses, and complement contributes but does not fully mediate E5'N depletion.  相似文献   

11.
Diabetic cardiomyopathy is 1 of the major causes of death in diabetic patients, but the pathogenesis is unclear. There is evidence that RhoA, a small GTPase, might be involved in cardiac function. This study, therefore, analyzed RhoA expression and activation in hearts of diabetic rats. Male Sprague-Dawley rats were divided into control and diabetic groups of 18 each. Diabetes was induced by intravenous injection of streptozotocin (55 mg/kg). Rats were studied 3 weeks after induction of diabetes. Heart rate, which was measured 24 h/day, decreased by 93 +/- 7 beats/min in diabetic rats. There was a 62% decrease (p < 0.01) in RhoA mRNA expression in heart tissues (left ventricle) of diabetic rats (38.5 +/- 6.7 x 106 molecules/microg total RNA) compared with controls (101 +/- 10.3 x 106 molecules/microg total RNA). Western blot showed a 33% decrease in total RhoA protein expression in heart tissues of diabetic rats compared with controls (p < 0.05). A reduced RhoA translocation in heart tissues of diabetic rats was determined by a 64% decrease in membrane-bound RhoA (p < 0.01 vs. control group), indicating that the activation of RhoA is markedly reduced in diabetic myocardium. Our data suggest that down-regulated RhoA may be involved in cardiomyopathy in diabetic rats.  相似文献   

12.
The kinetic properties and inhibitor sensitivity of the Na+-H+ exchange activity present in the inner membrane of rat heart and liver mitochondria were studied. (1) Na+-induced H+ efflux from mitochondria followed Michaelis-Menten kinetics. In heart mitochondria, the Km for Na+ was 24 +/- 4 mM and the Vmax was 4.5 +/- 1.4 nmol H+/mg protein per s (n = 6). Basically similar values were obtained in liver mitochondria (Km = 31 +/- 2 mM, Vmax = 5.3 +/- 0.2 nmol H+/mg protein per s, n = 4). (2) Li+ proved to be a substrate (Km = 5.9 mM, Vmax = 2.3 nmol H+/mg protein per s) and a potent competitive inhibitor with respect to Na+ (Ki approximately 0.7 mM). (3) External H+ inhibited the mitochondrial Na+-H+ exchange competitively. (4) Two benzamil derivatives of amiloride, 5-(N-4-chlorobenzyl)-N-(2',4'-dimethyl)benzamil and 3',5'-bis(trifluoromethyl)benzamil were effective inhibitors of the mitochondrial Na+-H+ exchange (50% inhibition was attained by approx. 60 microM in the presence of 15 mM Na+). (5) Three 5-amino analogues of amiloride, which are very strong Na+-H+ exchange blockers on the plasma membrane, exerted only weak inhibitory activity on the mitochondrial Na+-H+ exchange. (6) The results indicate that the mitochondrial and the plasma membrane antiporters represent distinct molecular entities.  相似文献   

13.
In diabetic cardiomyopathy, ventricular dysfunction occurs in the absence of hypertension or atherosclerosis and is accompanied by altered myocardial substrate utilization and depressed mitochondrial respiration. It is not known if mitochondrial function differs across the left ventricular (LV) wall in diabetes. In the healthy heart, the inner subendocardial region demonstrates higher rates of blood flow, oxygen consumption, and ATP turnover compared with the outer subepicardial region, but published transmural respirometric measurements have not demonstrated differences. We aim to measure mitochondrial function in Wistar rat LV to determine the effects of age, streptozotocin-diabetes, and LV layer. High-resolution respirometry measured indexes of respiration in saponin-skinned fibers dissected from the LV subendocardium and subepicardium of 3-mo-old rats after 1 mo of streptozotocin-induced diabetes and 4-mo-old rats following 2 mo of diabetes. Heart rate and heartbeat duration were measured under isoflurane-anesthesia using a fetal-Doppler, and transmission electron microscopy was employed to observe ultrastructural differences. Heart rate decreased with age and diabetes, whereas heartbeat duration increased with diabetes. While there were no transmural respirational differences in young healthy rat hearts, both myocardial layers showed a respiratory depression with age (30-40%). In 1-mo diabetic rat hearts only subepicardial respiration was depressed, whereas after 2 mo diabetes, respiration in subendocardial and subepicardial layers was depressed and showed elevated leak (state 2) respiration. These data provide evidence that mitochondrial dysfunction is first detectable in the subepicardium of diabetic rat LV, whereas there are measureable changes in LV mitochondria after only 4 mo of aging.  相似文献   

14.
1. Palmitoyl-CoA synthetase activity was assayed in subfractions of control and Quaking, Jimpy, Shiverer and Trembler mouse brain. 2. Mouse brain palmitoyl-CoA synthetase activity is not altered during myelination. 3. Mouse brain enzyme activity (homogenate 1.5 +/- 0.3 nmol palmitoyl carnitine/min/per mg protein crude mitochondria 0.6 +/- 0.1 nmol/min/per mg protein and microsomes 1.9 +/- 0.3 nmol/min/per mg protein) does not differ markedly from rat and rabbit brain activity. 4. The lesions of the above mutants which affect myelination and lipid synthesis do not include the enzyme palmitoyl-CoA synthetase.  相似文献   

15.
In human placenta, 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, an enzyme complex found in microsomes and mitochondria, synthesizes progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate. The dehydrogenase and isomerase activities of the mitochondrial enzyme were copurified (733-fold) using sequential cholate solubilization, ion exchange chromatography (DEAE-Toyopearl 650S), and hydroxylapatite chromatography (Bio-Gel HT). Enzyme homogeneity was demonstrated by a single protein band in SDS-polyacrylamide gel electrophoresis (monomeric Mr = 41,000), gel filtration at constant specific enzyme activity (Mr = 77,000), and a single NH2-terminal sequence. Kinetic constants were determined for the oxidation of pregnenolone (Km = 1.6 microM, Vmax = 48.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.4 microM, Vmax = 48.5 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.3 microM, Vmax = 914.2 nmol/min/mg) and 5-androstene-3,17-dione (Km = 27.6 microM, Vmax = 888.4 nmol/min/mg. Mixed substrate studies showed that the dehydrogenase and isomerase activities utilize their respective pregnene and androstene substrates competitively. Dixon analysis demonstrated that the product steroids, progesterone and androstenedione, are competitive inhibitors of the C-21 and C-19 dehydrogenase activities. Enzyme purified from mitochondria and microsomes had similar kinetic profiles with respect to substrate utilization, product inhibition, and cofactor (NAD+) reduction (mean Km +/- SD using C-19 and C-21 dehydrogenase substrates = 26.4 +/- 0.8 microM, mean Vmax = 73.2 +/- 1.3 nmol/min/mg). Pure enzyme from both organelles exhibited identical biophysical properties in terms of molecular weight and subunit composition, pH optima (pH 9.8, dehydrogenase; pH 7.5, isomerase), temperature optimum (37 degrees C), stability in storage and solution, effects of divalent cations, and the single NH2-terminal sequence of 27 amino acids. These results suggest that the mitochondrial and microsomal enzymes are the same protein localized in different organelles.  相似文献   

16.
In failing hearts, although protein phosphatase type 1 (PP1) activity has increased, information about the regulation and status of PP1 inhibitor-1 (INH-1) and inhibitor-2 (INH-2) is limited. In this study, we examined activity and protein expression of PP1, INH-1 and INH-2 and phosphorylation of sarcoplasmic reticulum (SR) phospholamban (PLB), a substrate of PP1 and modulator of SR Ca2+-ATPase activity, in failing and non-failing hearts. These studies were performed in LV myocardium of seven rats with chronic renal hypertension produced by Goldblatt's one-kidney, one-clip procedure and seven age-matched sham-operated normal controls (CTR). Eight weeks after surgery, LV ejection fraction, LV hypertrophy, and pulmonary congestion were determined in all rats. PP1 activity (nmol 32P/min/mg non-collagen protein) was assessed in LV homogenates using 32P-labeled phosphorylase a as substrate. INH-1 and INH-2 activity was determined in the immunoprecipitate of LV homogenates and expressed as percentage inhibitory activity. Using a specific antibody, LV tissue levels of PP1C and calsequestrin (CSQ), a SR calcium binding protein, which is not altered in failing hearts, were also determined. Further, total and phosphorylated PLB, INH-1 and INH-2 protein levels were determined in the LV homogenate and phosphoprotein-enriched fraction, respectively. The band density of each protein was quantified in densitometric units and normalized to CSQ. Results: rats with chronic renal hypertension exhibited significantly reduced LV ejection fraction and increased LV hypertrophy and pulmonary congestion, characteristics of chronic heart failure (CHF). We found that compared to CTR, (1) both INH-1 (10.2+/-2 versus 57.5+/-1; p < 0.05) and INH-2 activity (3.8+/-0.4 versus 36.2+/-4; p < 0.05) were reduced, (2) total and phosphorylated PLB amount reduced, (3) protein level of phosphorylated INH-1 was reduced (2.32+/-0.1 versus 0.73+/-0.04; p < 0.05) whereas that of phosphorylated INH-2 increased (3.05+/-0.3 versus 1.42+/-0.1; p < 0.05), and (4) PP1 activity was increased approximately 2.6-fold in rats with CHF (1.59+/-0.05 versus 0.61+/-0.01; p < 0.05) while protein level of the catalytic subunit of PP1 (PP1C) increased 3.85-fold (0.77+/-0.05 versus 0.20+/-0.02; p < 0.05). These results suggest that reduced inhibitory INH-1 and INH-2 activity, increased PP1C protein level, and reduced PLB phosphorylation are associated with increased PP1 activity in failing hearts.  相似文献   

17.
Connexin 43 (Cx43) is localized at left ventricular (LV) gap junctions and in cardiomyocyte mitochondria. A genetically induced reduction of Cx43 as well as blockade of mitochondrial Cx43 import abolishes the infarct size (IS) reduction by ischemic preconditioning (IP). With progressing age, Cx43 content in ventricular and atrial tissue homogenates is reduced. We now investigated whether or not 1) the mitochondrial Cx43 content is reduced in aged mice hearts and 2) IS reduction by IP is lost in aged mice hearts in vivo. Confirming previous results, sarcolemmal Cx43 content was reduced in aged (>13 mo) compared with young (<3 mo) C57Bl/6 mice hearts, whereas the expression levels of protein kinase C epsilon and endothelial nitric oxide synthase remained unchanged. Also in mitochondria isolated from aged mice LV myocardium, Western blot analysis indicated a 40% decrease in Cx43 content compared with mitochondria isolated from young mice hearts. In young mice hearts, IP by one cycle of 10 min ischemia and 10 min reperfusion reduced IS (% of area at risk) following 30 min regional ischemia and 120 min reperfusion from 67.7 +/- 3.3 (n = 17) to 34.2 +/- 6.6 (n = 5, P < 0.05). In contrast, IP's cardioprotection was lost in aged mice hearts, since IS in nonpreconditioned (57.5 +/- 4.0, n = 10) and preconditioned hearts (65.4 +/- 6.3, n = 8, P = not significant) was not different. In conclusion, mitochondrial Cx43 content is decreased in aged mouse hearts. The reduced levels of Cx43 may contribute to the age-related loss of cardioprotection by IP.  相似文献   

18.
When recovering from heart failure (HF), the myocardium displays a marked plasticity and can regain normal gene expression and function; however, recovery of substrate oxidation capacity has not been explored. We tested whether cardiac functional recovery is matched by normalization of energy substrate utilization during post-HF recovery. HF was induced in dogs by pacing the left ventricle (LV) at 210-240 beats/min for 4 wk. Tachycardia was discontinued, and the heart was allowed to recover. An additional group was studied in HF, and healthy dogs served as controls (n = 8/group). Cardiac free fatty acids (FFAs) and glucose oxidation were measured with [3H]oleate and [14C]glucose. At 10 days of recovery, hemodynamic parameters returned to control values; however, the contractile response to dobutamine remained depressed, LV end-diastolic volume was 28% higher than control, and the heart mass-to-body mass ratio was increased (9.8 +/- 0.4 vs. 7.5 +/- 0.2 g/kg, P < 0.05). HF increased glucose oxidation (76.8 +/- 19.7 nmol.min(-1).g(-1)) and decreased FFA oxidation (20.7 +/- 6.4 nmol.min(-1).g(-1)), compared with normal dogs (24.5 +/- 6.3 and 51.7 +/- 9.6 nmol.min(-1).g(-1), respectively), and reversed to normal values at 10 days of recovery (25.4 +/- 6.0 and 46.6 +/- 6.7 nmol.min(-1).g(-1), respectively). However, similar to HF, the recovered dogs failed to increase glucose and fatty acid uptake in response to pacing stress. The activity of myocardial citrate synthase and aconitase was significantly decreased during recovery compared with that in control dogs (58 and 27% lower, respectively, P < 0.05), indicating a persistent reduction in mitochondrial oxidative capacity. In conclusion, cardiac energy substrate utilization is normalized in the early stage of post-HF recovery at baseline, but not under stress conditions.  相似文献   

19.
T Koyama  W Keatisuwan  M Kinjo  H Saito 《Life sciences》1992,51(14):1113-1118
Phospholipase A2 (PLA2) activity is elevated in cardiac microsomal fractions and phospholipids (PL) are much reduced in both the cardiac mitochondria and microsomal fractions from rats subjected to prolonged swimming. Preadministration of coenzyme Q10 (CoQ10 i.v. 30 mg/kg) significantly suppressed these changes. Two groups of 8-week-old male Wistar rats were trained to swim, receiving 30 min of training for 4 days. On the fifth day they were given an intravenous injection of either 30 mg/kg CoQ10 in saline or 1 ml saline. Thirty minutes later they began to swim for 3 hours carrying a weight representing 3% of body weight. On completion of the swim they were sacrified by instantaneous decapitation, and cardiac mitochondria were isolated. Mitochondria were also prepared from saline injected, unexercised control rats. Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) concentrations were measured with HPLC and PLA2 activity was assayed fluorometrically. The mitochondrial concentrations (means +/- SEM, n = 6) of PE and PC were respectively 126 +/- 22 and 140 +/- 22 nmol/mg protein in the exercise-CoQ10 group against 66 +/- 4 and 50 +/- 10 nmol/mg protein in the exercise-saline group. The specific PLA2 activities (expressed as nmol degraded dipyrene phosphorylethanolamine substrate/hr/mg protein) in the microsomes was 0.20 +/- 0.02 in the exercise-CoQ10 group against 0.30 +/- 0.02 in the exercise-saline group. These results suggest CoQ10 has a protective effect against an excessive reduction in mitochondrial membrane phospholipids during prolonged exercise.  相似文献   

20.
The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号