首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
This study examined changes in pH and extractable nutrients in soilsfollowing wetland creation. Sample plots were established in two areas: (1) an old-field with parts that were flooded during wetland creation, and (2) a native wetland in a floodplain of the Ohio River called Green Bottom Swamp. Soils were sampled before inundation and eight months afterwards. Compared to old-field soils in the pre-inundation period, swamp soils exhibited: (1) higher acidity, (2) lower NO3 and higher NH4 concentrations, (3) higher extractable P, Fe, and Mn, and (4) lower Ca, Mg, and Zn concentrations. Eight months after inundation, the old-field soil redox decreased from +210 mV in the old field –290 mV, and extractable NO3 and Ca decreased and extractable NH4 and Fe increased, but pH and extractable P, Mn, Mg, and Zn changed either slightly or not at all. These results suggest that eight months is an insufficient period of time for a complete change. Other results suggest that the response of nitrogen during the wetland creation processes may be extremely rapid.  相似文献   

2.
The toxic conditions of Oxisol soils attributed to oranging symptoms of rice grown in the Sitiung Transmigration area, Sumatra, Indonesia were evaluated in the laboratory. Changes of pH and Eh of flooded soils, and concentrations of nutrients in the soils and in the rice plants were measured. The soils were clayey, kaolinitic, isohyperthermic, Typic Haplorthox. It was found that Eh of the soils sharply decreased from an average value of +460 ± 150 mV to –217 ± 15 mV following 60 days of flooding (DF). During the same period of flooding, soil pH increased from an average value of 5.2 ± 0.6 to 6.6 ± 0.2. Concentrations of NaOAc extractable Fe, Mn, Zn, Cu, Mo, Ca, Mg, P, and K, but not Al, increased markedly whereas their water-soluble form, except Fe, decreased slightly following 60 DF. Leaf tissue analyses indicated that 13, 51 and 58% of the rice plant samples contained potentially toxic level of Mn, Fe and Al, respectively, as their contents were higher than the assumed threshold toxicity levels of 2500, 300, and 300 mg kg–1. Thirteen, 16, 2, and 3% of the leaf tissue also contained potentially deficient levels of P, K, Ca, and Mg, respectively. The oranging symptom in the rice leaf tissue appeared to be due to indirect toxicity of Fe, Mn, and Al, i.e., Fe-induced, Mn-induced, and Al-induced deficiency of P, K, Ca and Mg. As a result of the relatively high concentrations of NaOAc extractable Fe, Mn, and Al in the soil solution, root growth was limited and coated with iron and manganese oxides thereby reducing the root's capacity to absorb nutrients from the soils.The work was supported by USAID Grant No. DPE-5542-G-SS-4055-00 (3.F-10). Contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511, USA.  相似文献   

3.
Summary The effects of soil acidification (pH values from 6.5 to 3.8), and subsequent leaching, on levels of extractable nutrients in a soil were studied in a laboratory experiment. Below pH 5.5, acidification resulted in large increases in the amounts of exchangeable Al in the soil. Simultaneously, exchangeable cations were displayed from exchange sites and Ca, Mg, K and Na in soil solution increased markedly. With increasing soil acidification, increasing amounts of cations were leached; the magnitude of leaching loss was in the same order as the cations were present in the soil: Ca2+>Mg2+>K+>Na+. Soil acidification appeared to inhibit nitrification since in the unleached soils, levels of NO 3 clearly declined below pH 5.5 and at the same time levels of NH 4 + increased greatly. Significant amounts of NH 4 + and larger amounts of NO 3 , were removed from the soil during leaching. Concentrations of NaHCO3-extractable phosphate remained unchanged between pH 4.3 and 6.0 but were raised at higher and lower pH values. No leaching losses of phosphate were detected. For the unleached soils, levels of EDTA-extractable Mn and Zn increased as the soil was acidified whilst levels of extractable Fe were first decreased and then increased greatly and those for Cu were decreased slightly between pH 6.5 and 6.0 and then unaffected by further acidification. Significant leaching losses of Mn and Zn were observed at pH values below 5.5 but losses of Fe were very small and those of Cu were not detectable.  相似文献   

4.
This is the second of two papers presenting the data from an experiment on the application of aerobically-digested sewage sludge (AES), anaerobic lagoon septic wastes (ANS), sewage sludge compost and fertilizer to soils for grass forage and feed corn production at two different sites in Nova Scotia. Crop yields, plant tissue and Mehlich-1 extractable soil nutrients were evaluated; 15 elements were analyzed in the plant tissue and 9 elements in the soil extracts. This paper describes the Ca, Mg, S, Fe, Mn, Cu, Zn and B content of the crops and the Mehlich-1 extractable content of the soils. The response to the amendments was not consistent at the two sites with the two different crops. We found that the septic sludge (ANS) produced the highest forage Fe, Cu and Zn levels and was equal to compost in elevating corn stover and forage S and the forage B content. The compost produced the highest forage Ca and corn Zn, the AES produced the highest corn Mn, and fertilizer produced the highest forage Mn. None of the amendments produced excessive levels of the above nutrients; rather, the amendments improved the feed quality of the forage and corn stover. Lastly, it was noted that the Mehlich-1 extract only had a significantly positive correlation with forage Cu content.  相似文献   

5.
G. Nakos 《Plant and Soil》1984,79(1):101-121
Summary Soils derived from a number of different parent materials (lithologies) and developed along a climatic gradient, manifested by the altitudinal succession of natural vegetation zones (Mediterranean, sub-Mediterranean, Mountainous and Pseudoalpine), were sampled throughout mainland Greece.In soils derived from siliceous parent materials low in clay, acidity increase and percent base saturation decreases from the Mediterranean to the Pseudoalpine vegetation zones. Clay illuviation is found mainly in soils developed in the Mediterranean and the sub-Mediterranean zones. No such changes are apparent in clayey soils rich in bases.Organic matter content of the mineral portion of the soil profile increases by a factor of 2 with a decrease in mean annual air temperature of about 10°C. The pattern of change in clay and soil organic matter content with climate is in relatively good agreement with soil development trends in the area, when soil profiles are named according to the FAO-Unesco soil map of the world.Concentrations of Ca and Mg decrease and those of total N, total and extractable P, K, Fe, Mn and Zn increase from the Mediterranean to the Mountainous zone. Within the same zone, however, concentrations of N, Ca, K, Fe, Mn and Zn decrease, but those of Mg, total and extractable P increase with soil depth. The concentrations of most macro- and micronutrients in the humic horizon are several times higher than those in the mineral portion of the soil profile due to biological enrichment.  相似文献   

6.
Mineral elements are important components of medicinal herbs, and their concentrations are affected by many factors. In this study, Ca, Mg, Na, K, Fe, Mn, Cu, and Zn concentrations in wild Saposhnikovia divaricata and its rhizosphere soil collected from seven locations at two different times in China were measured, and influences of rhizosphere soil on those minerals in plant were evaluated. The results showed that mean concentrations of eight minerals in plant samples decreased in the order: Ca > Mg > Na > K > Fe > Zn > Mn > Cu, and those in the soil samples followed the following order: Na > Fe > Ca > K > Mg > Mn > Zn > Cu. Mean concentrations of Ca, Na, Mg, and K in plants were higher than those in soils, while higher mean concentrations of the other four minerals were found in soils. It was found that there was a positive correlation of Mg, Na, and Cu concentrations in the plant with those in the soil respectively, but a negative correlation of Mn concentration in plant with that in the soil. Except Ca, K, and Mn, the other five minerals in plant were all directly affected by one or more chemical compositions of soil. The results also indicate that pH value and concentrations of total nitrogen, Mg, Mn, and Cu in soil had significant correlations with multimineral elements in plant. In a word, mineral elements uptake of S. divaricata can be changed by adjusting the soil fertility levels to meet the need of appropriate quality control of S. divaricata.  相似文献   

7.
高山森林林窗对苔藓及土壤微量元素含量的影响   总被引:1,自引:0,他引:1  
苔藓植物和土壤在森林元素循环过程中具有重要作用,其元素含量特征可能受林窗和生长基质的影响,但有关不同林窗位置对苔藓和土壤微量元素含量影响的研究尚未见报道。为理解林窗更新对森林苔藓和土壤微量元素含量及分布特征的影响,于2016年10月,调查研究了在川西高山岷江冷杉(Abies faxoniana)原始林林下、林缘、林窗和旷地中地表苔藓和石生苔藓Na、Zn、Mg、Mn、Ca、Fe元素含量以及对应土壤有机层和矿质土壤层的元素含量。结果表明:川西高山森林地表苔藓与石生苔藓的Na、Zn、Mg、Fe、Ca含量差异不显著,地表苔藓的Mn元素含量显著高于石生苔藓;土壤有机层的Zn、Mg、Mn和Ca元素含量显著高于矿质土壤层,但Fe元素含量则相反,Na元素含量差异不显著。林窗位置对地表苔藓和石生苔藓Na、Zn、Ca和Fe元素含量具有相似的影响,均以林窗和旷地相对较高;石生苔藓与地表苔藓的Mn含量对林窗的响应存在差异,石生苔藓的Mn含量以林下最高,而地表苔藓则以林窗中心最高。但是,林窗对苔藓植物Mg元素含量的影响不显著。森林林窗位置对土壤有机层和矿质土壤层微量元素含量具有相似的影响。Na元素含量以旷地土壤最高,而Zn、Mn、Ca和Fe含量以林窗中心的土壤最高;除元素Na,所有微量元素均以林缘的土壤最低。此外,地表苔藓的Na、Zn、Mn和Ca含量显著高于土壤,而土壤中的Fe含量显著高于苔藓植物;苔藓中Ca和Mn元素含量与土壤的Ca和Mn元素含量呈显著正相关。可见,高山森林林窗更新过程在不同程度上影响了森林地表苔藓和土壤对微量元素的吸存特征,为进一步了解林窗和苔藓植物在高山森林生态系统物质循环中的作用提供了新的角度。  相似文献   

8.
Concentrations of major nutrients (C, N, P) and acid soluble metals (Ca, Mg, K, Al, Fe, Mn, Pb, and Zn) were determined in modern (0–1 cm) and pre-acidification (5–10 cm) sediment layers collected from 37 alpine and 3 forest lakes in the Tatra Mountains (Slovakia, Poland) in 1996–1998. Sediment composition reflected catchment characteristics and productivity of lakes. In the sediments of alpine lakes, C and N concentrations decreased and Mg increased with a decreasing proportion of vegetation and soil in the catchment. Decreasing Ca:Mg ratios in sediments along the vegetation gradient was inverse to that in water, and could be associated with different ratios of cations in water leachate from catchments and in solids which enter the lake due to soil erosion. Phosphorus concentrations increased with the proportion of moraine areas, with till soils rich in P. Concentrations of C, N, P, and Ca in sediments positively correlated to their concentrations in water. Sediment concentrations of Al and Al:Ca ratios increased with decreasing sediment and water pH. A negative correlation between water pH and concentrations of organic C in water and sediments indicated the important impact of organic acids on the acid status of the lakes exposed to higher terrestrial export of organic matter. Compared to the pre-acidification period, the modern sediments had significantly higher Fe, Mn, Zn, Pb, and K, but lower Mg concentrations. The Zn and Pb enrichment was more evident in oligotrophic alpine lakes than in more productive forest lakes and was independent of lake water or sediment pH. Fe and Mn concentrations in the modern sediments were higher than in ambient soils and bedrock, while those in pre-acidification sediments were similar to contemporary soils and to the rock layer. The enrichment of the modern sediments with Fe and Mn thus probably resulted from both their redox recycling and ecosystem acidification.  相似文献   

9.
Summary The effect of heating on the properties of Apomu (Psammentic Usthorthent), Egbeda (Oxic Paleustalf) and Gambari (Typic Plinthustalf) surface soils were studied under laboratory conditions. Heating at low temperatures (100°C) have no detrimental effects on soil properties, on the contrary it increased the soil extractable P, Mg, Fe, Mn and Zn levels. Pronounced reductions in total N, Org. C, Org. P and extractable Ca and Mg levels and marked increases in extractable P, Zn, Mn and Fe were observed by heating to 200°C. Heating to 500° had an adverse effect on soil chemical and physical properties.Plant height and dry matter yeild of rice plants were higher when grown on Egbeda soil previously heated to 100°C. With addition of N, P and K there was no observed beneficial effect of the heating treatment. Rice plants grown on Egbeda soil previously heated to 200°C showed high uptake of Mn. Plants grew badly in soil previously heated to 500°C.  相似文献   

10.
Summary Concentration of N, P, K, Ca, Mg and S in summer groundnut crop was higher than in kharif while Zn, Fe, Mn and Cu contents were higher in summer crop. Kernel's N, P and Zn; Leaflet's Ca and Mn; Stem's K and Fe; Root's S and Cu and Petiole's Mg contents were highest. Shell's N, P, K, Mg, S, Zn and Cu; Kernel's Ca, Fe and Mn contents were the least. N, P, K, S, Zn and Cu concentrations decreased linearly as the crop grew. Ca, Mg, Fe and Mn concentrations did not display any distinct pattern. Ca concentration was positively correlated with pod yield in both the seasons.  相似文献   

11.
This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4–N and NO3–N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4–N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic–metal–P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development.  相似文献   

12.
采用微波消解法处理旱芹根、茎、叶,并用火焰原子吸收法测定其中的Na、K、Ca、Mg、Fe、Mn、Zn、Cu 8种金属元素的含量。结果表明:旱芹中富含人体必需的Na、K、Mg、Fe、Ca等元素,各元素在不同部位含量有一定差异。Fe元素在旱芹根中含量为883.57μg.g-1,明显高于茎和叶;Ca、Zn和Mn元素在旱芹叶中的含量分别为11 103.74,214.04,88.07μg.g-1,明显高于茎和根;K、Na和Mg元素在旱芹茎中的含量高于根和叶中,Cu元素含量在各部位差异不大。方法的加标回收率为96.8%~105.8%,相对标准偏差(RSD)≤3.36%。  相似文献   

13.
四种金花茶组植物叶片金属元素含量及富集特性研究   总被引:1,自引:0,他引:1  
以四种金花茶组植物为研究对象,采用原子吸收光谱法和原子荧光法,测定其嫩叶、老叶及对应土壤中Mg、Ca、Mn、Fe、Zn、Ni、Se、Pb、Cd、Hg、As共11种元素的含量,并分别计算嫩叶和老叶对土壤金属元素的富集系数.结果表明:(1)4种金花茶组植物叶片富含Mg、Ga、Mn、Fe、Zn、Ni等营养元素,各元素在叶片中含量为Ca>Mg>Mn>Fe>Zn>Ni>Se;Pb、Cd、As、Hg等重金属元素含量较低,均达到无公害茶叶标准.(2)老叶和嫩叶中各金属元素含量差异较大,老叶中的Ca、Mn、Fe、Zn、Pb、Cd、Hg、As、Se元素含量均大于嫩叶,尤以Ca、Mn、Fe差异显著;嫩叶中的Mg和Ni含量大于老叶.(3)金花茶组植物对不同金属元素的富集能力不同,对各元素富集能力强弱为Ca、Mn、Mg>Zn、Ni、Hg>Pb、Se>Fe、As,老叶和嫩叶的富集规律存在差异.(4)不同金花茶组植物对金属元素的富集能力有较大差异,龙州金花茶(Camellia longzhouensis)和黄花抱茎茶(C.murauchii)对Mg、Ca、Mn、Zn、Ni、Se、Pb的富集能力均大于金花茶(C.nitidissima)和毛籽金花茶(C.ptilosperma).其中,龙州金花茶对Mg、Mn、Se的富集能力最强,黄花抱茎茶对Ca、Pb、Hg富集能力最强,金花茶对Hg的富集能力较强,对其它元素的富集能力均较弱;毛籽金花茶对Ca、Mn、Ni、Zn的富集能力均最弱.该研究结果为金花茶组植物的进一步开发和利用提供了理论依据.  相似文献   

14.
The chemical composition of throughfall depends on the age of the Norway spruce (Picea abies Karst) stands and season of the year. The pH of throughfall decreased and the amount of hydrogen ion in throughfall deposited to the soil increased with increasing age of spruce stands, especially in the winter season. Concentrations of K+, H+, SO4(2-), Mn2+, and NH4(+) in throughfall were higher than bulk precipitation for the whole year and K+, H+, and Mn2+ concentrations were higher in throughfall in winter and the growing season. This indicates that these ions were washed out or washed from the surface of needles and/or the bark, and that NO3(-), NH4(+), Ca2+, Mg2+, Fe2+, and Zn2+ were absorbed in the canopy. The effect of high nitrogen deposition, above critical loads, and an increase in the amount of sulfur and in the sum of the strong acids (S-SO4(2-) and N-NO3(-)) that reached the soil with throughfall may have implications for the vitality of spruce stands, especially in older age classes. The application of Principal Component Analysis (PCA) has led to identification of five factors responsible for the data structure ("mineral dust", "acidic emissions", "heavy metals-dust particles", "ammonium [NH4(+)]", and "H+"). They explain more than 60% of the total variance system. The strong positive correlation between stand age class and ionic concentrations in throughfall occurs for all year and the winter period for ions within the following categories: "acidic emissions", SO4(2-) + NO3(-); "heavy metals-dust particles", Fe2+ + Mn2+ + Zn2+; "mineral dust", Na+ + K+ + Ca2+ + Mg2+; "NH4(+)"; and "H+". The strength of the relationship decreases in the growing period, probably due to processes occurring in the canopy (adsorption, leaching, etc.).  相似文献   

15.
Summary Fluidized bed combustion represents a feasible technology for energy production utilizing high S fossil fuels. The process generates not only bed waste (FBM) (coal ash plus CaSO4 and unreacted CaO) but also flyash (FA). The later waste has not been evaluated for its effects on plants and soils. A greenhouse experiment, using apple seedlings, was carried out using FBM, FA and calcitic limestone applied at or up to twice the lime requirement on three soil materials. Seedling growth varied dependent upon the treatment-soil combination. Growth was reduced by 60% on the Manor soil from FA applied at twice the lime requirement and was attributed to the higher initial reactiveness of the FA compared to FBM or limestone. Leaf P, K, N, Cu and Al were not significantly affected by treatments over all soils while Ca, and N decreased and Mg varied depedent upon treatment. Soil pH was increased by all treatments. DTPA (diethylenetriaminepentaacetic acid) extractable Mn and Zn were good estimators of leaf Mn and Zn while DTPA Cu and Fe were not.  相似文献   

16.
金属离子对粪产碱杆菌C16的脱氮和亚硝酸盐积累的影响   总被引:2,自引:0,他引:2  
王瑶  刘玉香  安华  张浩 《微生物学通报》2014,41(11):2254-2263
【目的】研究不同金属离子对异养氨氧化细菌C16的生长和脱氮性能影响,探讨适于C16生长和脱氮的金属离子及其浓度。【方法】实验选用Mg2+、Mn2+、Fe2+、Cu2+、Zn2+5种金属离子,对C16的生长﹑脱氮性能﹑亚硝酸盐氮积累以及相关酶活性进行研究。【结果】Mg2+明显促进C16的生长和NH4+-N氧化速率;较高浓度Mn2+使得C16无法生长;原培养基中缺少Fe2+会抑制C16的生长和NH4+-N氧化速率;在原培养基中加入0.1 mmol/L的Cu2+对C16的生长和脱氮具有一定的促进作用,Cu2+使得培养基中基本无NO2--N和NH2OH的积累;不同浓度的Zn2+对C16的生长和氨氮去除有抑制作用。酶活实验结果显示,0.1 mmol/L Mg2+促进了羟胺氧化还原酶(HAO)的活性;0.1 mmol/L Cu2+促进了硝酸盐还原酶(Nar)和亚硝酸盐还原酶(Nir)的活性。【结论】Mg2+是C16生长和脱氮过程中的一种重要金属离子;加入Cu2+可避免过量亚硝酸盐积累。  相似文献   

17.
Summary The electro-chemical and chemical kinetics of six California rice soils were significantly influenced by the presence of salts up to an EC of 9 mmhos/cm in saturation extract (ECe). Subsamples of each soil salinity treatment were incubated for periods up to 10 weeks after flooding. Most of the changes in Eh and pH values took place in the first 3–4 weeks after submergence. Salinity decreased pH values, but slightly increased the redox-potential. Both ammonification and nitrate reduction were significantly decreased, by increasing soil salinity. Salinity up to 9 mmhos/cm did not affect levels of Bray and Kurtz extractable P, but increased the water extractable Ca, Mg, K and Mn. In DTPA extract, salinity in incubated soils had no effect on Zn in 4 soils, but it decreased Fe in acid and neutral soils. Possible explanations for the electro-chemical and chemical kinetic changes due to flooding and salinity are discussed.  相似文献   

18.
TYLER  G.; ZOHLEN  A. 《Annals of botany》1998,81(3):455-459
Mineral nutrients of seeds constitute a significant source ofessential elements to seedlings and developing individuals ofvascular plants. In spite of their potential ecological significance,seed nutrient pools have attracted little attention with respectto calcifuge–calcicole behaviour of plants. The objectivesof this study were, therefore, to compare concentrations of13 macro- and micronutrients (K, Rb, Mg, Ca, Mn, Fe, Co, Cu,Zn, Mo, B, P and S) in seeds and leaves of 35 mainly herbaceousvascular plant species growing on both limestone (calcareous)and silicate (non-calcareous) soils. Concentrations of Rb andCo in seeds of plants originating from limestone soils were,on average, about half of those from silicate soils. Concentrationsof Mn, Mg, Zn and P of seeds were, or tended to be, lower orslightly lower in limestone-soil plants, whereas mean Ca andMo concentrations were higher. Comparing seed and leaf concentrationsof the same species from limestone and silicate soils generallydemonstrated a high P enrichment ratio, but a particularly lowK enrichment ratio in seeds, valid for both types of soil. Itwas also apparent that Fe and Mn, micronutrients which are lessreadily solubilized and taken up by plants on limestone soils,had significantly higher seed:leaf concentration ratios in plantsfrom limestone than from silicate soils, whereas the oppositewas true for Ca. This indicates a ‘strategy’ tosatisfy the demand of seedlings for elements which are lessreadily available in the soil.Copyright 1998 Annals of BotanyCompany Seed, leaf, plant, nutrient, content, calcareous, silicate, acid, soil.  相似文献   

19.
青藏高原掌叶大黄和丽江大黄及其土壤的主要元素含量   总被引:1,自引:0,他引:1  
采集掌叶大黄(Rheum palmatum)和丽江大黄(Rheum likiangense)根茎、叶及根部土壤,应用ICP测定主要元素含量特征,研究了2种大黄及其土壤的元素含量特征。结果表明,2种大黄土壤P含量远低于大黄根茎和叶,Fe含量则为土壤〉根茎〉叶,其中根茎与叶相差不大,但它们与土壤相差50~110倍;Na、Mn、Cu含量在2种大黄中都表现为土壤〉叶〉根茎,Ca含量在掌叶大黄中为土壤〈叶〈  相似文献   

20.
There are limited data on essential nutrients in the whole blood of young children. As part of a longitudinal study of the impact on young children and the environment from the introduction of an organic Mn compound into unleaded gasoline in Australia, we have measured a suite of elements in whole blood. The children, aged between 6 and 31 months at recruitment, have been monitored at 6-month intervals for up to 5 years. Blood samples were analysed by inductively coupled plasma mass spectrometry for Ca, Mg, Fe, Mn, Cu, Zn and Pb. Mixed model analyses of 665 blood samples using backward elimination showed significant positive relationships between Ca, Mg and Zn and season, variable relationships with time, but no association with gender or traffic exposure. The elements Ca, Mg and Zn showed higher concentrations in summer compared with winter, whereas Fe and Pb showed lower concentrations in summer compared with winter. Concentrations of all elements except Fe showed significant effects over time: Ca, Cu, Mg, Pb and Mn showed decreases over time, whereas Zn showed an increase. The mixed model analyses with the individual elements as the dependent variable showed some interesting relationships and require further follow-up as some of these appear to conflict with pre-existing concepts, although the multi-element data on which these concepts are based are limited. The variance for blood Pb and blood Mn arising from the other elements was small with 0.5% in the case of blood Pb and 3.7% for blood Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号