首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular aging is associated with both structural and functional changes that can take place at the level of the endothelium, vascular smooth muscle cells and the extracellular matrix of blood vessels. With regard to the endothelium, reduced vasodilatation in response to agonists occurs in large conduit arteries as well as in resistance arteries with aging. Reviews concerning the different hypotheses that may account for this endothelial dysfunction have pointed out alterations in the equilibrium between endothelium-derived relaxing and constricting factors. Thus, a decreased vasorelaxation due to nitric oxide and, in some arteries, endothelium-derived hyperpolarizing factor as well as an increased vasoconstriction mediated by cyclooxygenase products such as thromboxane A2 are likely to occur in age-induced impairment of endothelial vasodilatation. Furthermore, enhanced oxidative stress plays a critical role in the deleterious effect of aging on the endothelium by means of nitric oxide breakdown due to reactive oxygen species. The relative contribution of the above phenomenon in age-related endothelial dysfunction is highly dependent on the species and type of vascular bed.  相似文献   

2.
Adipose tissue is a critical regulator of energy balance and substrate metabolism, and synthesizes several different substances with endocrine or paracrine functions, which regulate the overall energetic homeostasis. An excessive amount of adipose tissue has been associated with the development of type 2 diabetes, premature atherosclerosis, and cardiovascular disease. It is believed that the adverse metabolic impact of visceral fat relies on a relative resistance to the action of insulin in this depot compared to other adipose tissue depots. However, information on insulin signalling reactions in human fat is limited. In this paper, we review the major insulin signalling pathways in adipocytes and their relevance for metabolic regulation, and discuss recent data indicating different signalling properties of visceral fat as compared to other fat depots, which may explain the metabolic and hormonal specificity of this fat tissue depot in humans.  相似文献   

3.
The role of inflammation in vascular insulin resistance with focus on IL-6   总被引:1,自引:0,他引:1  
The present review focuses on the possible role of interleukin-(IL)-6 in vascular insulin resistance. The endothelium plays an important role in regulating the tone of the vasculature by releasing nitric oxide (NO) to the smooth muscles of the vessels, thereby regulating the distribution of blood flow to the various tissues in relation to their energy demand. A dysfunctioning endothelium has been associated with both initiation and progression of atherosclerotic cardiovascular (CV) disease and has been shown to predate the onset of hyperglycemia in the natural history of type 2 diabetes. It is likely that chronic low-level inflammation plays an important role in developing endothelial dysfunction mainly through proinflammatory actions of tumor necrosis factor alpha (TNF-alpha). TNF-alpha induces production of IL-6 and it has been suggested that a causal relationship exists between endothelial dysfunction and these cytokines. With regard to vascular insulin resistance, the available data point to a direct pathogenic role of TNF-alpha in mediating endothelial dysfunction, whereas with regard to IL-6 evidence is sparse and does not allow any firm conclusions.  相似文献   

4.
Body fat distribution and ectopic fat deposition are important determinants of insulin sensitivity. Fat deposition in muscle and the liver, in particular, has been found to impair insulin signalling in these insulin-sensitive tissues. Thus, exact quantification of fat content may help to distinguish between different sites of insulin resistance. Increased fat deposition in the visceral compartment compared with the subcutaneous depot also represents an important factor leading to insulin resistance. Recent data clearly showed that visceral fat is a strong determinant of liver fat content. Exact quantification of fat distribution by magnetic resonance imaging and magnetic resonance spectroscopy may help to define distinct 'fat-distribution phenotypes'. This may allow a search for new candidate genes for type 2 diabetes mellitus and identify, at an early stage, individuals at risk for decline in insulin sensitivity.  相似文献   

5.
Ong KL  Wong LY  Cheung BM 《Peptides》2008,29(5):859-867
Urotensin II is a potent vasoconstrictive peptide that mediates both endothelium-independent vasoconstriction and endothelium-dependent vasodilatation. Its plasma level correlates positively with body weight and is raised in diabetes, renal failure, hypertension, and other cardiovascular diseases including congestive heart failure and carotid atherosclerosis. It can inhibit glucose-induced insulin secretion, and genetic variants in urotensin II gene are associated with insulin resistance and type 2 diabetes. Urotensin II also affects lipid metabolism in fish and food intake in mice. Recent studies have also demonstrated a role of urotensin II in inflammation and endothelial dysfunction. These findings suggest a close relationship between urotensin II and at least some components of the metabolic syndrome, including hypertension, insulin resistance, hyperglycemia, and inflammation.  相似文献   

6.
Insulin exerts both NO-dependent vasodilator and endothelin-dependent vasoconstrictor effects on skeletal muscle arterioles. The intracellular enzymes 1-phosphatidylinositol 3-kinase (PI3-kinase) and Akt have been shown to mediate the vasodilator effects of insulin, but the signaling molecules involved in the vasoconstrictor effects of insulin in these arterioles are unknown. Our objective was to identify intracellular mediators of acute vasoconstrictor effects of insulin on skeletal muscle arterioles. Rat cremaster first-order arterioles (n=40) were isolated, and vasoreactivity to insulin was studied using a pressure myograph. Insulin induced dose-dependent vasoconstriction of skeletal muscle arterioles (up to -22 +/- 3% of basal diameter; P <0.05) during PI3-kinase inhibition with wortmannin (50 nmol/l). Insulin-induced vasoconstriction was abolished by inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) with PD-98059 (40 micromol/l). In addition, inhibition of ERK1/2 without PI3-kinase inhibition uncovered insulin-mediated vasodilatation in skeletal muscle arterioles (up to 37 +/- 10% of baseline diameter; P <0.05). Effects of insulin on ERK1/2 activation in arterioles were then investigated by Western blot analysis. Insulin induced a transient 2.4-fold increase in ERK1/2 phosphorylation (maximal at approximately 15 min) in skeletal muscle arterioles (P <0.05). Removal of the arteriolar endothelium abolished insulin-induced vasoconstriction, which suggests that activation of ERK1/2 in endothelial cells is involved in acute insulin-mediated vasoconstriction. To investigate this, acute effects of insulin on ERK1/2 phosphorylation were studied in human microvascular endothelial cells. In support of the findings in skeletal muscle arterioles, insulin induced a 1.9-fold increase in ERK1/2 phosphorylation (maximal at approximately 15 min) in microvascular endothelial cells (P <0.05). We conclude that acute vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by activation of ERK1/2 in endothelium. This ERK1/2-mediated vasoconstrictor effect antagonizes insulin-induced, PI3-kinase-dependent vasodilatation in skeletal muscle arterioles. These findings provide a novel mechanism by which insulin may determine blood flow and glucose disposal in skeletal muscle.  相似文献   

7.
Schmidt BM 《Steroids》2008,73(9-10):961-965
There is increasing evidence for the importance of rapid non-genomic effects of aldosterone on the human vasculature including renal vessels. Arima and colleagues by examining isolated perfused afferent and efferent arterioles from rabbit kidneys found a vasoconstriction in both. In another study the same group showed that endothelium-derived nitric oxide (NO) modulates the vasoconstrictor response to aldosterone in rabbit preglomerular afferent arterioles. Disrupting the endothelium as well as blockade of endothelial NO synthase (eNOS) augmented aldosterone-induced vasoconstriction in this study. Uhrenholt et al. found no effect of aldosterone alone to afferent arterioles but a suppression of depolarisation-induced vasoconstriction. After the blockade of eNOS the aldosterone effect was completely suppressed. In a clinical study in healthy male volunteers injection of aldosterone had no statistically significant effects. Co-infusion of the eNOS inhibitor N(G)-monomethyl-L-arginine (L-NMMA) changed the effect of aldosterone on renal hemodynamics. Aldosterone in co-infusion with L-NMMA decreased renal plasma flow (RPF) much stronger than L-NMMA alone. Infusion of L-NMMA alone increased GFR whereas aldosterone/L-NMMA lowered GFR slightly. Aldosterone co-infused with L-NMMA strongly increased renal vascular resistance (RVR). The increase was on top of the smaller increase that was induced by L-NMMA infusion. These data indicate that aldosterone acts via rapid non-genomic effects in vivo in humans at the renal vasculature. Antagonizing the endothelial nitric oxide synthase unmasks these effects. Therefore, rapid non-genomic aldosterone effects increase renal vascular resistance and thereby may mediate arterial hypertension if endothelial dysfunction is present.  相似文献   

8.
The number of people with the insulin-resistant conditions of type 2 diabetes mellitus (T2DM) and obesity has reached epidemic proportions worldwide. Eighty percent of people with T2DM will die from the complications of cardiovascular atherosclerosis. Insulin resistance is characterised by endothelial dysfunction, which is a pivotal step in the initiation/progression of atherosclerosis. A hallmark of endothelial dysfunction is an unfavourable imbalance between the bioavailability of the antiatherosclerotic signalling molecule nitric oxide (NO) and proatherosclerotic reactive oxygen species. In this review we discuss the mechanisms linking insulin resistance to endothelial dysfunction, with a particular emphasis on a potential role for a toxic effect of free fatty acids on endothelial cell homeostasis.  相似文献   

9.
Cytokine levels are elevated in many cardiovascular diseases and seem to be implicated in the associated disturbances in vascular reactivity reported in these diseases. Arterial blood pressure is maintained within a normal range by changes in peripheral resistance and cardiac output. Peripheral resistance is mainly determined by small resistance arteries and arterioles. This review focuses on the effects of cytokines, mainly TNF-alpha, IL-1beta, and IL-6, on the reactivity of resistance arteries. The vascular effects of cytokines depend on the balance between the vasoactive mediators released under their influence in the different vascular beds. Cytokines may induce a vasodilatation and hyporesponsiveness to vasoconstrictors that may be relevant to the pathogenesis of septic shock. Cytokines may also induce vasoconstriction or increase the response to vasoconstrictor agents and impair endothelium-dependent vasodilatation. These effects may help predispose to vessel spasm, thrombosis, and atherogenesis and reinforce the link between inflammation and vascular disease.  相似文献   

10.
Flow-induced dilation (FID) is an important physiological stimulus that regulates tissue blood flow and is mediated by endothelium-derived factors that play a role in vascular integrity and the development of atherosclerosis. In coronary artery disease (CAD), conduit artery FID is impaired. The purpose of this study was to determine the mechanism of FID in human visceral adipose and examine whether the presence of conduit coronary atherosclerosis is associated with altered endothelial function in visceral fat. FID was determined in isolated visceral fat arterioles from patients with and without CAD. After constriction with endothelin-1, increases in flow produced an endothelium-dependent vasodilation that was sensitive to N(omega)-nitro-l-arginine methyl ester (l-NAME) in visceral fat arterioles from patients without CAD. In contrast, l-NAME alone or in combination with indomethacin had no effect on FID in similarly located arterioles from patients with CAD. Flow increased dichlorofluorescein (DCF) and dihydroethidium fluorescence accumulation in arterioles from patients with CAD versus without, indicative of the production of oxidative metabolites and superoxide, respectively. Both the dilation and DCF fluorescence to flow were reduced in the presence of the H(2)O(2) scavenger polyethylene glycol-catalase. Exogenous H(2)O(2) elicited similar relaxations of arterioles from patients in both groups. These data indicate that FID in visceral fat arterioles is nitric oxide dependent in the absence of known CAD. However, in the presence of CAD, H(2)O(2) replaces nitric oxide as the mediator of endothelium-dependent FID. This study provides evidence that adverse microvascular changes during CAD are evident in human visceral adipose, a tissue associated with CAD.  相似文献   

11.
We hypothesized that neutralization of TNF-alpha at the time of reperfusion exerts a salubrious role on endothelial function and reduces the production of reactive oxygen species. We employed a mouse model of myocardial ischemia-reperfusion (I/R, 30 min/90 min) and administered TNF-alpha neutralizing antibodies at the time of reperfusion. I/R elevated TNF-alpha expression (mRNA and protein), whereas administration of anti-TNF-alpha before reperfusion attenuated TNF-alpha expression. We detected TNF-alpha expression in vascular smooth muscle cells, mast cells, and macrophages, but not in the endothelial cells. I/R induced endothelial dysfunction and superoxide production. Administration of anti-TNF-alpha at the onset of reperfusion partially restored nitric oxide-mediated coronary arteriolar dilation and reduced superoxide production. I/R increased the activity of NAD(P)H oxidase and of xanthine oxidase and enhanced the formation of nitrotyrosine residues in untreated mice compared with shams. Administration of anti-TNF-alpha before reperfusion blocked the increase in activity of these enzymes. Inhibition of xanthine oxidase (allopurinol) or NAD(P)H oxidase (apocynin) improved endothelium-dependent dilation and reduced superoxide production in isolated coronary arterioles following I/R. Interestingly, I/R enhanced superoxide generation and reduced endothelial function in neutropenic animals and in mice treated with a neutrophil NAD(P)H oxidase inhibitor, indicating that the effects of TNF-alpha are not through neutrophil activation. We conclude that myocardial ischemia initiates TNF-alpha expression, which induces vascular oxidative stress, independent of neutrophil activation, and leads to coronary endothelial dysfunction.  相似文献   

12.
The distribution of fat in obese persons is related to the risk of developing various metabolic disorders, such as glucose intolerance, dyslipidemia and hypertension, and the combination of these conditions is known as the metabolic syndrome. The aim of this study was to investigate the role of subcutaneous fat in regulating insulin resistance and its influence on TNF-alpha expression in visceral fat, by using mice that were subjected to subcutaneous lipectomy with or without subsequent fat transplantation. After partial subcutaneous lipectomy, mice showed significantly greater accumulation of visceral fat compared with sham-operated control mice. Lipectomy led to higher plasma insulin and lower plasma glucose levels after loading with glucose and insulin, respectively, compared with the levels in control mice. Insulin-induced phosphorylation of IRS-1 was decreased in the skeletal muscles of lipectomized mice. Subcutaneous transplantation of fat pads into lipectomized mice reversed the above-mentioned changes indicating insulin resistance in these animals. The fat storage area of adipocytes and TNF- alpha expression by adipocytes in visceral fat were significantly higher in the lipectomized mice than in controls, while subcutaneous transplantation of fat reduced both the fat storage area and TNF-alpha expression. The insulin resistance of lipectomized mice was also ameliorated by systemic neutralization of TNF-alpha activity using a specific antibody. These findings obtained in mice subjected to subcutaneous lipectomy with/without subsequent fat transplantation indicate that subcutaneous fat regulates systemic insulin sensitivity, possibly through altering fat storage and the expression of TNF-alpha by adipocytes in visceral fat. The balance between accumulation of subcutaneous fat and visceral fat may be important with respect to the occurrence of systemic insulin resistance in the metabolic syndrome.  相似文献   

13.
Metabolic syndrome consists of metabolic abnormality with central obesity, hypertriglyceridemia, insulin resistance and hypertension. Adipose tissue has been known as a primary site of insulin resistance and its adipocyte size may be correlated with the degree of insulin resistance. A designed angiopoietin-1, COMP-Angiopoietin-1 (COMP-Ang1), mitigated high-fat diet-induced insulin resistance in skeletal muscle. In this study, we examined effects of COMP-Ang1 on adipocyte droplet size, vascular endothelial cell density in adipose tissue and metabolic parameters in db/db mice by administering COMP-Ang1 or LacZ (as a control) adenovirus. Administration of COMP-Ang1 decreased fat droplet diameter in epididymal and abdominal visceral adipocyte and visceral fat content in db/db mice. The density of vascular endothelial cell in adipose tissue was increased in db/db mice after treatment with COMP-Ang1. Serum resistin and tumor necrosis factor-α level was lower after treatment with COMP-Ang1 in db/db mice. COMP-Ang1 caused a restoration of fasting glycemic control in db/db mice and decreased serum insulin level and insulin resistance measured by HOMA index. These findings indicate that COMP-Ang1 regulates adipocyte fat droplet diameter, vascular endothelial cell density and metabolic parameters in db/db mice.  相似文献   

14.
Functional and structural heterogeneity exists among skeletal muscle vascular beds related, in part, to muscle fiber type composition. This study was designed to delineate whether the vulnerability to vascular dysfunction in insulin resistance is uniformly distributed among skeletal muscle vasculatures and whether physical activity modifies this vulnerability. Obese, hyperphagic Otsuka Long-Evans Tokushima fatty rats (20 wk old) were sedentary (OSED) or physically active (OPA; access to running wheels) and compared with age-matched sedentary Long-Evans Tokushima Otsuka (LSED) rats. Vascular responses were determined in isolated, pressurized feed arteries from fast-twitch gastrocnemius (GFAs) and slow-twitch soleus (SFAs) muscles. OSED animals were obese, insulin resistant, and hypertriglyceridemic, traits absent in LSED and OPA rats. GFAs from OSED animals exhibited depressed dilation to ACh, but not sodium nitroprusside, and enhanced vasoconstriction to endothelin-1 (ET-1), but not phenylephrine, compared with those in LSED. Immunoblot analysis suggests reduced endothelial nitric oxide synthase phosphorylation at Ser1177 and endothelin subtype A receptor expression in OSED GFAs. Physical activity prevented reduced nitric oxide-dependent dilation to ACh, but not enhanced ET-1 vasoconstriction, in GFA from OPA animals. Conversely, vasoreactivity of SFAs to ACh and ET-1 were principally similar in all groups, whereas dilation to sodium nitroprusside was enhanced in OSED and OPA rats. These data demonstrate, for the first time, that SFAs from insulin-resistant rats exhibit reduced vulnerability to dysfunction versus GFAs and that physical activity largely prevents GFA dysfunction. We conclude that these results demonstrate that vascular dysfunction associated with insulin resistance is heterogeneously distributed across skeletal muscle vasculatures related, in part, to muscle fiber type and activity level.  相似文献   

15.
Tumor necrosis factor-alpha (TNF-alpha) transgenic mice have previously been found to have characteristics consistent with emphysema and severe pulmonary hypertension. Lungs demonstrated alveolar enlargement as well as interstitial thickening due to chronic inflammation and perivascular fibrosis. In the present report, we sought to determine potential mechanisms leading to development of pulmonary hypertension in TNF-alpha transgenic mice. To determine whether sustained vasoconstriction was an important component of this pulmonary hypertension, nitric oxide was administered and hemodynamics were measured. Nitric oxide (25 ppm) failed to normalize right ventricular pressure in transgene-positive mice, suggesting that the pulmonary hypertension was not due to sustained vasoconstriction. Structural analysis of the pulmonary arteries found adventitial thickening and a trend toward medial hypertrophy in pulmonary arteries of transgene-positive mice, suggesting that vascular remodeling had occurred. Echocardiographic measurement of the percent fractional shortening of the left ventricle as a measurement of ventricular function in vivo revealed that left ventricular dysfunction was not contributing to pulmonary hypertension. We examined expression of genes known to be important in regulation of vascular tone and structure. Messenger RNA expression of vascular endothelial growth factor and its receptor flk-1 was reduced compared with transgene-negative littermates at all ages. Endothelial and inducible nitric oxide synthase mRNA levels were similar in both groups. Endothelin-1 mRNA was also decreased in TNF-alpha transgenic mice. Interestingly, female transgenic mice had decreased survival rate compared with male transgenic mice. We conclude that chronic overexpression of TNF-alpha is associated with decreased vascular endothelial growth factor and flk-1 gene expression, pulmonary vascular remodeling, and severe pulmonary hypertension, although the precise mechanism is unknown.  相似文献   

16.
The role of sexual dimorphic adipose tissue fat accumulation in the development of insulin resistance is well known. However, whether vitamin A status and/or its metabolic pathway display any sex- or depot (visceral/subcutaneous)-specific pattern and have a role in sexual dimorphic adipose tissue development and insulin resistance are not completely understood. Therefore, to assess this, 5 weeks old Wistar male and female rats of eight from each sex were provided either control or diabetogenic (high fat, high sucrose) diet for 26 weeks. At the end, consumption of diabetogenic diet increased the visceral fat depots (p < 0.001) in the males and subcutaneous depot (p < 0.05) in the female rats, compared to their sex-matched controls. On the other hand, it caused adipocyte hypertrophy (p < 0.05) of visceral depot (retroperitoneal) in the females and subcutaneous depot of the male rats. Although vitamin A levels displayed sex- and depot-specific increase due to the consumption of diabetogenic diet, the expression of most of its metabolic pathway genes in adipose depots remained unaltered. However, the mRNA levels of some of lipid droplet proteins (perilipins) and adipose tissue secretory proteins (interleukins, lipocalin-2) did display sexual dimorphism. Nonetheless, the long-term feeding of diabetogenic diet impaired the insulin sensitivity, thus affected glucose clearance rate and muscle glucose-uptake in both the sexes of rats. In conclusion, the chronic consumption of diabetogenic diet caused insulin resistance in the male and female rats, but did not corroborate with sexual dimorphic adipose tissue fat accumulation or its vitamin A status.  相似文献   

17.
Borst SE  Bagby GJ 《Cytokine》2004,26(5):217-222
Overexpression of mRNA for tumor necrosis factor-alpha (TNF-alpha) has been observed in adipose tissue in several rodent models of insulin resistance. The purpose of the present study was to examine the expression of TNF-alpha protein during the onset of insulin resistance in maturing Sprague-Dawley (S-D) rats. Compared to 2 months, rats aged 5 and 12 months were glucose intolerant and fasting glucose was elevated at 12 months (p < 0.05). Compared to 2 months, insulin concentrations following glucose loading were elevated at 5 months (p < 0.05) and also at 12 months, but to a lesser degree. In isolated strips of soleus muscle, insulin-stimulated glucose transport was reduced by 38% and 59% between 2 and 5 months and between 2 and 12 months, respectively (p < 0.05), with no changes in basal transport. Insulin resistance was associated with decreased content of TNF-alpha protein in visceral and subcutaneous fat. TNF-alpha protein content was also decreased in tibialis anterior muscle, but was unchanged in soleus and red gastrocnemius muscles. Liver was the only tissue examined that showed an increase in TNF-alpha protein content. In vitro secretion of TNF-alpha protein was markedly reduced in explants of visceral and subcutaneous fat from mature, insulin-resistant animals, but TNF-alpha bioactivity in subcutaneous fat was maintained with age. These results indicate that the onset of insulin resistance in mature S-D rats is associated with reduced adipose expression of TNF-alpha. Our findings do not support the adipose-endocrine model of TNF-alpha in insulin resistance. Our findings do support a paracrine role for TNF-alpha or for a reduction in endogenous TNF-alpha inhibitors in insulin resistance.  相似文献   

18.
PURPOSE OF REVIEW: Endothelial dysfunction plays a crucial role in the pathogenesis of atherosclerosis and related cardiovascular diseases. Glucotoxicity, lipotoxicity, and inflammation all independently contribute to development of both endothelial dysfunction and insulin resistance. We review pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance and recent insights from therapeutic interventions to improve both metabolic and vascular function. RECENT FINDINGS: Shared causal factors such as glucotoxicity, lipotoxicity, and inflammation interact at multiple levels creating reciprocal relationships between insulin resistance and endothelial dysfunction that help to explain frequent clustering of metabolic and cardiovascular disorders. Metabolic abnormalities implicated in the development of insulin resistance, including hyperglycemia, elevated levels of free fatty acids, accumulation of advanced glycation end products, dyslipidemias, and decreased levels of adiponectin, also contribute importantly to endothelial dysfunction. Diet, exercise, cardiovascular drugs, and insulin sensitizers simultaneously improve endothelium-dependent vascular function, reduce inflammation, and improve insulin sensitivity by both distinct and interrelated mechanisms. SUMMARY: Pathophysiological mechanisms underlying reciprocal relationships between endothelial dysfunction and insulin resistance contribute to clustering of metabolic and cardiovascular diseases represented by the metabolic syndrome. Therapeutic interventions that target endothelial dysfunction or insulin resistance often simultaneously improve both metabolic and vascular function.  相似文献   

19.
We examined the possible role of tumor necrosis factor-alpha (TNF-alpha) as a mediator of insulin resistance in maturing male Sprague-Dawley rats. Rats were treated either with goat anti-murine TNF-alpha IgG (anti-TNF-alpha) or goat nonimmune IgG (NI) for 7 days. Vascular catheters were implanted, and rats were fasted overnight before hyperinsulinemic euglycemic clamp (HUC) studies were performed. TNF-alpha neutralization increased the rate of glucose infusion required to maintain euglycemia by 68%. Insulin-stimulated glucose transport into individual tissues was measured after bolus administration of 2-deoxy-[(14)C]glucose during HUC. Anti-TNF-alpha administration increased glucose transport in muscles composed predominantly of fast-twitch fibers: white gastrocnemius muscle (68% increase) and tibialis anterior muscle (64% increase). There were nonsignificant trends for increased glucose transport in the slow-twitch soleus muscle and in the mixed-fiber red gastrocnemius muscle. Glucose transport was unchanged in visceral and subcutaneous fat. Anti-TNF treatment did not alter body weight, muscle mass, or fat mass. Anti-TNF-alpha did not alter the distribution of the 17-kDa and 26-kDa forms of TNF-alpha in either muscle or fat. However, anti-TNF-alpha treatment caused an approximately 50% reduction in the secretion of TNF-alpha bioactivity in vitro by explants of visceral and subcutaneous fat. We conclude that TNF-alpha neutralization reversed insulin resistance substantially in fast-twitch muscle and may have done so in other muscles, while having little effect in fat. TNF-alpha neutralization was accompanied by reduced TNF-alpha bioactivity without tissue depletion of TNF-alpha protein.  相似文献   

20.
Using preadipocyte implantation methods, we recently demonstrated that adipocytes in the visceral area change their function, as the expression of tumor necrosis factor-alpha (TNF-alpha) increases, thereby causing insulin resistance. In order to clarify the mechanism for changes in the function of adipocytes in visceral area, we examined the mRNA expression profiles in visceral fat tissue specimens. Four weeks after cell implantation, we performed a microarray analysis using the RNA of fat tissue specimens implanted either with 3T3-L1 cells or PBS alone. Sixty-three genes were thus isolated and the expression of matrix metalloproteinase-3 (MMP-3) mRNA was found to dramatically increase in the fat tissue specimens. The neutralization of MMP-3 protein inhibited adipogenesis and the free fatty acid-induced TNF-alpha secretion in 3T3-L1 adipocytes. These results suggest a potential role of MMP-3, which promotes the TNF-alpha secretion, thus contributing to the disturbance of the functions in the adipocytes which accumulate in the visceral area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号