首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the ratio of interfibrillar mitochondrial volume density (Vvmit) to myofibrillar volume density (Vvmyo) and isometric fatigue characteristics of the human triceps surae was determined in six bodybuilders, six endurance athletes, and six active controls before and after 16 wk of isometric training at 30 or 100% maximal voluntary contraction (MVC) in six sedentary subjects in a unilateral exercise model. Time to fatigue at 30% MVC was significantly less in sedentary subjects before training than in the other subject groups, but it was similar to the other groups posttraining. Stereological analyses of type I fibers indicated that Vvmit/Vvmyo was less in bodybuilders than in other subjects. Training at 30% MVC increased type I fiber Vvmit/Vvmyo of the soleus by 11% but did not affect the gastrocnemii. Training at 100% MVC did not alter Vvmit/Vvmyo in any muscle, nor was this ratio changed in type II fibers by either training program. Despite the morphological differences, both training protocols increased relative endurance, although greater fatigue resistance was seen after training at 30% MVC. Correlation analyses indicated that isometric endurance and improvements in muscle endurance by isometric exercise were not dependent on increasing interfibrillar Vvmit or Vvmit/Vvmyo in either fiber type.  相似文献   

2.
The effects of regular submaximal exercise on dietary protein requirements, whole body protein turnover, and urinary 3-methylhistidine were determined in six young (26.8 +/- 1.2 yr) and six middle-aged (52.0 +/- 1.9 yr) endurance-trained men. They consumed 0.6, 0.9, or 1.2 g.kg-1.day-1 of high-quality protein over three separate 10-day periods, while maintaining training and constant body weight. Nitrogen measurements in diet, urine, and stool and estimated sweat and miscellaneous nitrogen losses showed that they were all in negative nitrogen balance at a protein intake of 0.6 g.kg-1.day-1. The estimated protein requirement was 0.94 +/- 0.05 g.kg-1.day-1 for the 12 men, with no effect of age. Whole body protein turnover, using [15N]glycine as a tracer, and 3-methylhistidine excretion were not different in the two groups, despite lower physical activity of the middle-aged men. Protein intake affected whole body protein flux and synthesis but not 3-methylhistidine excretion. These data show that habitual endurance exercise was associated with dietary protein needs greater than the current Recommended Dietary Allowance of 0.8 g.kg-1.day-1. However, whole body protein turnover and 3-methylhistidine excretion were not different from values reported for sedentary men.  相似文献   

3.
《PloS one》2016,11(1)
There are strong genetic components to cardiorespiratory fitness and its response to exercise training. It would be useful to understand the differences in the genomic profile of highly trained endurance athletes of world class caliber and sedentary controls. An international consortium (GAMES) was established in order to compare elite endurance athletes and ethnicity-matched controls in a case-control study design. Genome-wide association studies were undertaken on two cohorts of elite endurance athletes and controls (GENATHLETE and Japanese endurance runners), from which a panel of 45 promising markers was identified. These markers were tested for replication in seven additional cohorts of endurance athletes and controls: from Australia, Ethiopia, Japan, Kenya, Poland, Russia and Spain. The study is based on a total of 1520 endurance athletes (835 who took part in endurance events in World Championships and/or Olympic Games) and 2760 controls. We hypothesized that world-class athletes are likely to be characterized by an even higher concentration of endurance performance alleles and we performed separate analyses on this subsample. The meta-analysis of all available studies revealed one statistically significant marker (rs558129 at GALNTL6 locus, p = 0.0002), even after correcting for multiple testing. As shown by the low heterogeneity index (I2 = 0), all eight cohorts showed the same direction of association with rs558129, even though p-values varied across the individual studies. In summary, this study did not identify a panel of genomic variants common to these elite endurance athlete groups. Since GAMES was underpowered to identify alleles with small effect sizes, some of the suggestive leads identified should be explored in expanded comparisons of world-class endurance athletes and sedentary controls and in tightly controlled exercise training studies. Such studies have the potential to illuminate the biology not only of world class endurance performance but also of compromised cardiac functions and cardiometabolic diseases.  相似文献   

4.
This study was conducted to investigate alterations in excretion of urea and total nitrogen after6-8 weeks of daily exercise and to establish if the capacity for amino acid oxidation in muscle is influenced by endurance training. Urea nitrogen excretion was increased in trained compared with untrained rats and nitrogen balance was less positive in trained than in untrained rats. Increased [14C]leucine oxidation with training was observed both in vivo and in vitro. The results of this study demonstrate that amino acid catabolism is increased during exercise training and that the muscle enzymes involved in leucine oxidation adapt to endurance training in a manner similar to the enzymes of carbohydrate and fat catabolism.  相似文献   

5.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

6.
Regular endurance exercise increases central arterial compliance, whereas resistance training decreases it. It is not known how the vasculature adapts to a combination of endurance and resistance training. Rowing is unique, because its training encompasses endurance- and strength-training components. We used a cross-sectional study design to determine arterial compliance of 15 healthy, habitual rowers [50 +/- 9 (SD) yr, 11 men and 4 women] and 15 sedentary controls (52 +/- 8 yr, 10 men and 5 women). Rowers had been training 5.4 +/- 1.2 days/wk for 5.7 +/- 4.0 yr. The two groups were matched for age, body composition, blood pressure, and metabolic risk factors. Central arterial compliance (simultaneous ultrasound and applanation tonometry on the common carotid artery) was higher (P < 0.001) and carotid beta-stiffness index was lower (P < 0.001) in rowers than in sedentary controls. There were no group differences for measures of peripheral (femoral) arterial stiffness. The higher central arterial compliance in rowers was associated with a greater cardiovagal baroreflex sensitivity, as estimated during a Valsalva maneuver (r = 0.54, P < 0.005). In conclusion, regular rowing exercise in middle-aged and older adults is associated with a favorable effect on the elastic properties of the central arteries. Our results suggest that simultaneously performed endurance training may negate the stiffening effects of strength training.  相似文献   

7.
The extreme thinness of the pulmonary blood-gasbarrier results in high mechanical stresses in the capillary wall whenthe capillary pressure rises during exercise. We have previously shown that, in elite cyclists, 6-8 min of maximal exercise increase blood-gas barrier permeability and result in higher concentrations ofred blood cells, total protein, and leukotrieneB4 in bronchoalveolar lavage (BAL)fluid compared with results in sedentary controls. To test thehypothesis that stress failure of the barrier only occurs at thehighest level of exercise, we performed BAL in six healthy athletesafter 1 h of exercise at 77% of maximalO2 consumption. Controls wereeight normal nonathletes who did not exercise before BAL. In contrastwith our previous study, we did not find higher concentrations of redblood cells, total protein, and leukotriene B4 in the exercising athletescompared with control subjects. However, higher concentrations ofsurfactant apoprotein A and a higher surfactant apoproteinA-to-phospholipid ratio were observed in the athletes performingprolonged exercise, compared with both the controls and the athletesfrom our previous study. These results suggest that, in elite athletes,the integrity of the blood-gas barrier is altered only at extremelevels of exercise.

  相似文献   

8.
Leucine kinetic and nitrogen balance (NBAL) methods were used to determine the dietary protein requirements of strength athletes (SA) compared with sedentary subjects (S). Individual subjects were randomly assigned to one of three protein intakes: low protein (LP) = 0.86 g protein.kg-1.day-1, moderate protein (MP) = 1.40 g protein.kg-1.day-1, or high protein (HP) = 2.40 g protein.kg-1.day-1 for 13 days for each dietary treatment. NBAL was measured and whole body protein synthesis (WBPS) and leucine oxidation were determined from L-[1-13C]leucine turnover. NBAL data were used to determine that the protein intake for zero NBAL for S was 0.69 g.kg-1.day-1 and for SA was 1.41 g.kg-1.day-1. A suggested recommended intake for S was 0.89 g.kg-1.day-1 and for SA was 1.76 g.kg-1.day-1. For SA, the LP diet did not provide adequate protein and resulted in an accommodated state (decreased WBPS vs. MP and HP), and the MP diet resulted in a state of adaptation [increase in WBPS (vs. LP) and no change in leucine oxidation (vs. LP)]. The HP diet did not result in increased WBPS compared with the MP diet, but leucine oxidation did increase significantly, indicating a nutrient overload. For S the LP diet provided adequate protein, and increasing protein intake did not increase WBPS. On the HP diet leucine oxidation increased for S. These results indicated that the MP and HP diets were nutrient overloads for S. There were no effects of varying protein intake on indexes of lean body mass (creatinine excretion, body density) for either group. In summary, protein requirements for athletes performing strength training are greater than for sedentary individuals and are above current Canadian and US recommended daily protein intake requirements for young healthy males.  相似文献   

9.
To test the hypotheses that short-term bed-rest (BR) deconditioning influences metabolic, cardiorespiratory, and neurohormonal responses to exercise and that these effects depend on the subjects' training status, 12 sedentary men and 10 endurance- and 10 strength-trained athletes were submitted to 3-day BR. Before and after BR they performed incremental exercise test until volitional exhaustion. Respiratory gas exchange and heart rate (HR) were recorded continuously, and stroke volume (SV) was measured at submaximal loads. Blood was taken for lactate concentration ([LA]), epinephrine concentration ([Epi]), norepinephrine concentration ([NE]), plasma renin activity (PRA), human growth hormone concentration ([hGH]), testosterone, and cortisol determination. Reduction of peak oxygen uptake (VO(2 peak)) after BR was greater in the endurance athletes than in the remaining groups (17 vs. 10%). Decrements in VO(2 peak) correlated positively with the initial values (r = 0.73, P < 0.001). Resting and exercise respiratory exchange ratios were increased in athletes. Cardiac output was unchanged by BR in all groups, but exercise HR was increased and SV diminished in the sedentary subjects. The submaximal [LA] and [LA] thresholds were decreased in the endurance athletes from 71 to 60% VO(2 peak) (P < 0.001); they also had an earlier increase in [NE], an attenuated increase in [hGH], and accentuated PRA and cortisol elevations during exercise. These effects were insignificant in the remaining subjects. In conclusion, reduction of exercise performance and modifications in neurohormonal response to exercise after BR depend on the previous level and mode of physical training, being the most pronounced in the endurance athletes.  相似文献   

10.
We sought to determine whether the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism is associated with submaximal exercise cardiovascular hemodynamics. Postmenopausal healthy women (20 sedentary, 20 physically active, 22 endurance athletes) had cardiac output (acetylene rebreathing) measured during 40, 60, and 80% VO(2 max) exercise. The interaction of ACE genotype and habitual physical activity (PA) level was significantly associated with submaximal exercise systolic blood pressure, with only sedentary women exhibiting differences among genotypes. No significant effects of ACE genotype or its interaction with PA levels was observed for submaximal exercise diastolic blood pressure. ACE genotype was significantly associated with submaximal exercise heart rate (HR) with ACE II having approximately 10 beats/min higher HR than ACE ID/DD genotype women. ACE genotype did not interact significantly with habitual PA level to associate with submaximal exercise HR. ACE genotype was not independently, but was interactively with habitual PA levels, associated with differences in submaximal exercise cardiac output and stroke volume. For cardiac output, ACE II genotype women athletes had ~25% greater cardiac output than ACE DD genotype women athletes, whereas for stroke volume genotype-dependent differences were observed in both the physically active and athletic women. ACE genotype was not significantly associated, either independently or interactively with habitual PA levels, with submaximal exercise total peripheral resistance or arteriovenous O(2) difference. Thus the common ACE locus polymorphic variation is associated with many submaximal exercise cardiovascular hemodynamic responses.  相似文献   

11.
The aim of this study was to determine the association between the rs6552828 polymorphism in acyl coenzyme A synthetase (ACSL1) and elite endurance athletic status. We studied 82 Caucasian (Spanish) World/Olympic-class endurance male athletes, and a group of sex and ethnically matched healthy young adults (controls, n=197). The analyses were replicated in a cohort of a different ethnic origin (Chinese of the Han ethnic group), composed of elite endurance athletes (runners) [cases, n=241 (128 male)] and healthy sedentary adults [controls, n=504 (267 male)]. In the Spanish cohort, genotype (P=0.591) and minor allele (A) frequencies were similar in cases and controls (P=0.978). In the Chinese cohort, genotype (P=0.973) and minor allele (G) frequencies were comparable in female endurance athletes and sedentary controls (P=0.881), whereas in males the frequency of the G allele was higher in endurance athletes (0.40) compared with their controls (0.32, P=0.040). The odds ratio (95%CI) for an elite endurance Chinese athlete to carry the G allele compared with ethnically matched controls was 1.381 (1.015-1.880) (P-value=0.04). Our findings suggest that the ACSL1 gene polymorphism rs6552828 is not associated with elite endurance athletic status in Caucasians, yet a marginal association seems to exist for the Chinese (Han) male population.  相似文献   

12.
Previously, a strong relationship has been found between whole body maximal aerobic power (VO(2 max)) and peak vascular conductance in the calf muscle (J. L. Reading, J. M. Goodman, M. J. Plyley, J. S. Floras, P. P. Liu, P. R. McLaughlin, and R. J. Shephard. J. Appl. Physiol. 74: 567-573, 1993; P. G. Snell, W. H. Martin, J. C. Buckley, and C. G. Blomqvist. J. Appl. Physiol. 62: 606-610, 1987), suggesting a matching between maximal exercise capacity and peripheral vasodilatory reserve across a broad range of aerobic power. In contrast, long-term training could alter this relationship because of the unique demands for muscle blood flow and cardiac output imposed by different types of training. In particular, the high local blood flows but relatively low cardiac output demand imposed by the type of resistance training used by bodybuilders may cause a relatively greater development in peripheral vascular reserve than in aerobic power. To examine this possibility, we studied the relationship between treadmill VO(2 max) and vascular conductance in the calf by using strain-gauge plethysmography after maximal ischemic plantar flexion exercise in 8 healthy sedentary subjects (HS) and 28 athletes. The athletes were further divided into three groups: 10 elite middle-distance runners (ER), 11 power athletes (PA), and 7 bodybuilders (BB). We found that both BB and ER deviate from the previously demonstrated relationship between VO(2 max) and vascular conductance. Specifically, for a given vascular conductance, BB had a lower VO(2 max), whereas ER had a higher VO(2 max) than did HS and PA. We conclude that the relationship between peak vascular conductance and aerobic power is altered in BB and ER because of training-specific effects on central vs. peripheral cardiovascular adaptation to local skeletal muscle metabolic demand.  相似文献   

13.
To determine whether female athletes have unusually low energy requirements as suggested by many food intake studies, energy expenditure (EE) and intake were assessed in nine elite distance runners [26 +/- 3 (SD) yr, 53 +/- 4 kg, 12 +/- 3% body fat, and 66 +/- 4 ml.kg-1.min-1 maximal O2 uptake]. Subjects were admitted to a metabolic ward for 40 h during which 24-h sedentary EE was measured in a respiratory chamber. Free-living EE was then assessed by the doubly labeled water method for the next 6 days while the women recorded all food intake, daily body weight, and training mileage (10 +/- 3 miles/day). Energy intakes estimated from free-living EE (2,826 +/- 312 kcal/day) and body weight changes (-84 +/- 71 g/day) averaged 221 +/- 550 kcal/day in excess of those calculated from food records (2,193 +/- 466 kcal/day). The energy cost of training (1,087 +/- 244 kcal/day) was calculated as the difference between free-living EE and 24-h EE in the respiratory chamber (1,681 +/- 84 kcal/day) corrected for the thermic effect of food of the extra energy intake. These data do not support the hypothesis that training as a distance runner results in metabolic adaptations that lower energy requirements in women.  相似文献   

14.
To determine whether strength-trained individuals with physiological concentric left ventricular (LV) hypertrophy exhibit enhanced inotropic responses to catecholamines, we studied 11 bodybuilders, aged 33.0 +/- 2 (SE) yr old, and 10 sedentary healthy subjects, aged 31.3 +/- 2.4 yr old, at baseline and during infusion of incremental doses of dobutamine after atropine. The bodybuilders had larger LV mass, posterior wall and septal wall thicknesses, and wall thickness-to-radius ratio, assessed with two-dimensional echocardiography, than did the sedentary subjects. There was a significant correlation between LV mass and lean body mass irrespective of training status. Baseline LV fractional shortening was similar in the two groups. There was a greater inotropic response to dobutamine in the strength-trained individuals, as evidenced by a steeper slope of the fractional shortening-end-systolic wall stress relationship with a higher y-axis intercept and by a shallower end-systolic wall stress-end systolic diameter relationship without changes in end-diastolic diameter. The heart rate response to dobutamine was attenuated in the strength-trained athletes. There was a significant correlation (r = 0.604, P < 0.05) between the inotropic sensitivity to dobutamine and LV mass normalized for lean body mass in the bodybuilders. The data suggest that concentric LV physiological hypertrophy in the resistance-trained individuals is associated with enhanced inotropic but not chronotropic responses to catecholamines.  相似文献   

15.
Recent evidence suggests that exercise-induced hypoxemia (EIH) may occur in healthy trained endurance athletes. However, at present, no data exist to describe the regularity of EIH in athletes or non-athletes. Therefore, the purpose of the present investigation was to determine the incidence of EIH during exercise in healthy subjects varying in physical fitness. Subjects (N = 68) performed an incremental cycle ergometer test to volitional fatigue with percent arterial oxyhemoglobin saturation (%SaO2) measured min-by-min. For the purpose of data analysis subjects were divided into three groups according to their level of physical training: 1) untrained (N = 16), 2) moderately trained (N = 27), and 3) elite highly trained endurance athletes (N = 25). EIH was defined as a %SaO2 of less than or equal to 91% during exercise. EIH did not occur in any of the untrained subjects or the moderately trained subjects. However, EIH occurred in 52% of the highly trained endurance athletes tested and was highly reproducible (r = 0.95; P less than 0.05). These findings further confirm the existence of EIH in healthy highly trained endurance athletes and suggests a rather high incidence of EIH in this healthy population. Hence, it is important that the clinician or physiologist performing exercise testing in elite endurance athletes recognize that EIH can and does occur in the elite endurance athlete in the absence of lung disease.  相似文献   

16.
Blood born micro(mi)RNA expression pattern have been reported for various human diseases with signatures specific for diseases. To evaluate these biomarkers, it is mandatory to know possible changes of miRNA signatures in healthy individuals under different physiological conditions. We analyzed the miRNA expression in peripheral blood of elite endurance athletes and moderatly active controls. Blood drawing was done before and after exhaustive exercise in each group. After Benjamini-Hochberg adjustment we did not find any miRNA with significant p-values when comparing miRNA expression between the different groups. We found, however, 24 different miRNAs with an expression fold change of minimum 1.5 in at least one of the comparisons (athletes before vs after exercise, athletes before exercise vs controls and athletes after exercise vs controls). The observed changes are not significant in contrast to the expression changes of the blood born miRNA expression reported for many human diseases. These data support the idea of disease associated miRNA patterns useful as biomarkers that are not readily altered by physiological conditions.  相似文献   

17.
Mitochondrial function is absolutely necessary to supply the energy required for muscles, and germ line mutations in mitochondrial genes have been related with impaired cardiac function and exercise intolerance. In addition, alleles at several polymorphic sites in mtDNA define nine common haplogroups, and some of these haplogroups have been implicated in the risk of developing several diseases. In this study, we analysed the association between mtHaplogroups and the capacity to reach the status of elite endurance athlete. DNA was obtained from blood leukocytes of 95 Spanish elite endurance athletes and 250 healthy male population controls. We analysed eight mitochondrial polymorphisms and the frequencies were statistically compared between elite athletes and controls. Haplogroup T, specifically defined by 13368A, was significantly less frequent among elite endurance athletes (p =0.012, Fisher's exact test). Our study suggests that allele 13368A and mitochondrial haplogroup T might be a marker negatively associated with the status of elite endurance athlete. This mitochondrial variant could be related with a lower capacity to respond to endurance training, through unknown mechanisms involving a less efficient mitochondrial workload.  相似文献   

18.
Endurance, marathon-type exertion is known to induce adverse changes in the immune system. Increased airway hyper-responsiveness and airway inflammation are well documented in endurance athletes and endurance exercise is considered a major risk factor for asthma in elite athletes. Yet, the mechanisms underlying this phenomenon are still to be deduced. We studied the effect of strenuous endurance exercise (marathon and half-ironman triathlon) on CD4+ lymphocyte sub-populations and on the balance between effector and regulatory CD4+ lymphocytes in the peripheral blood of trained athletes, Endurance exercise induced a significant increase in Th17 cells and a sustained decrease in peripheral blood regulatory T cells (Tregs). While interleukin (IL)-2 levels remained undetectable, post-race serum IL-6 and transforming growth factor (TGF) β levels were significantly elevated. Treg levels in sedentary controls'' decreased in vitro after incubation with athletes'' post-exercise serum, an effect that was attenuated by supplements of IL-2 or anti IL-6 neutralizing antibodies. Our data suggest that exercise-induced changes in serum cytokine levels promote alterations in Tregs and Th17 cell populations, which may divert the subtle balance in the immune system towards inflammation. This may explain allergic and autoimmune phenomena previously reported in endurance athletes and contribute to our understanding of exercise-related asthma.  相似文献   

19.
This study compared the lung volumes and pulmonary functions of older endurance-trained athletes with those of healthy sedentary age-matched controls, young athletes, and young untrained men to determine whether training affects the age-associated changes in these variables. Despite large differences in maximal 02 consumption (VO2max), the older athletes and their sedentary peers had similar values for all pulmonary variables when expressed as absolute values. However, because the older athletes were shorter than the older sedentary men, their vital capacity, total lung capacity (TLC), and forced expiratory volume in 1 s were significantly larger than those of the older sedentary men when normalized for age and height; the average values for maximal voluntary ventilation and residual volume (RV) were also larger in the older athletes when normalized for age and height, but the differences were not significant. The young trained and untrained men did not differ in any of these measures. TLC was the only pulmonary variable that was the same in the young and older men; RV and the RV-to-TLC ratio were larger, whereas all other pulmonary function and volume measures were lower in the older men compared with the younger men. The older athletes were the only group whose lung volumes and pulmonary function measures were all, except for RV, substantially greater than expected based on their age and height. Thus prolonged strenuous endurance training in these older highly trained endurance athletes appears to have altered the decline in pulmonary function and volumes associated with aging.  相似文献   

20.
This study compared the body water turnover in endurance athletes and age-matched sedentary men. Eight competitive endurance athletes (20.8+/-1.9 yr) and age-matched eight sedentary men (21.6+/-2.5 yr) participated in this study. Total body water and body water turnover were measured using the deuterium (D(2)O) dilution technique. Urine samples were obtained every day for 10 days after oral administration of D(2)O. The day-by-day concentrations were used to calculate the biological half-life of D(2)O and body water turnover. Maximal oxygen uptake (VO(2max)) and oxygen uptake corresponding to ventilatory threshold (VO(2VT)) as an index of aerobic capacity were determined during a graded exercise test. Both VO(2max) and VO(2VT) were higher in the exercise group than in the sedentary group (P<0.05). The biological half-life of D(2)O was significantly shorter in the exercise group than in the sedentary group (5.89+/-0.81 days vs. 7.52+/-0.77 days, P<0.05), and the percentage of the body water turnover was significantly higher in the exercise group than in the sedentary group (11.99+/-1.96% vs. 9.39+/-1.21%, P<0.05). The body water turnover was correlated with VO(2max) and VO(2VT), respectively (P<0.05). Based on these findings, this study speculates that a level of physical activity may induce a body water turnover higher in the healthy state, since the better trained subjects have a higher body water turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号