首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of bacteria to members of the stress-associated family of catecholamine hormones, principally norepinephrine, has been demonstrated to increase both growth and production of virulence-related factors. Mutation of genes for enterobactin synthesis and uptake revealed an absolute requirement for enterobactin in norepinephrine-stimulated growth of Escherichia coli O157:H7. The autoinducer produced by norepinephrine-stimulated E. coli could not substitute for enterobactin. We also demonstrate that norepinephrine promotes iron shuttling between transferrin molecules, thereby enabling the bacterial siderophore enterobactin to more readily acquire iron for growth. These results suggest one of the possible mechanisms by which the hormonal output of stress may affect enterohaemorrhagic E. coli pathogenicity.  相似文献   

2.
Oxinobactin, a siderophore analogue to enterobactin but possessing 8-hydroxyquinoline instead of catechol complexing subunits, has been synthesized starting from L-serine and 8-hydroxyquinoline. Comparative iron binding studies showed that oxinobactin is as effective as enterobactin for the complexation of Fe(III) at physiological pH but with improved complexing ability at acidic pH.  相似文献   

3.
Fast protein liquid chromatography (FPLC) with DEAE-Sepharose Fast Flow, PBE-94 and Q-Sepharose Fast Flow columns are applied to the purification of the ferric enterobactin protein receptor (FepA). The apparent single band of FepA on SDS-PAGE is isolated and purified into two proteins with very similar molecular weights. The two proteins are identified to be FepA and ferric citrate protein receptor (FecA) by N-terminus amino acid determination and a computer search with the Gene Bank file. The assay of binding activities of these proteins shows that both FepA and FecA bind ferric enterobactin, with the former having about double the activity of the latter. Competition studies shows that Fe-MECAM is competitively bound to both proteins and that ferric parabactin only slightly competes with [55Fe]ferric enterobactin. It is found that ferrichrome A has no effect on the binding of the receptor proteins with ferric enterobactin.  相似文献   

4.
5.
Exogenous inorganic pyrophosphate increases the biomass yield of Escherichia coli. In this report, we show that the effect of pyrophosphate is related to iron uptake. We have found that addition of pyrophosphate, ammonium iron (III) citrate or iron (III) chloride, in M63 minimal medium containing 1.7 microM of iron, causes an increase in growth yield. In contrast to iron chloride or ammonium iron (III) citrate, exogenous pyrophosphate is deleterious to strains unable to synthesize enterobactin. Thus the positive effect of pyrophosphate is related to the enterobactin uptake system expressed in a low iron content medium. Pyrophosphate in minimal medium has a repressing effect on the expression of Fur-regulated genes. In iron rich medium where enterobactin synthesis is strongly decreased, addition of pyrophosphate increases expression of Fur-regulated genes. Furthermore, this latter regulatory effect of pyrophosphate in iron-rich medium is enhanced in the absence of enterobactin synthesis. It has also been shown that addition of pyrophosphate protects the cell against the oxidative stress caused by the presence of hydrogen peroxide in an iron-rich containing medium. These results indicate that pyrophosphate acts as an iron-chelating agent, could trigger the enterobactin-dependent iron uptake system and could promote an increased binding of iron to enterobactin.  相似文献   

6.
Pyridinochelin, a novel tetradentate catecholate-type siderophore, has been designed on the basis of the active analog enterobactin and was then synthesized. Growth promotion tests indicate that this synthetic siderophore feeds various pathogenic bacteria most effectively with iron even though it lacks one catecholate group compared to enterobactin. The superposition of the mentioned siderophore structures suggests that the structure of the skeleton connecting the catecholate groups might be an important factor for the iron transport.  相似文献   

7.
The Escherichia coli entB gene, coding for the enterobactin biosynthetic enzyme isochorismatase, has been subcloned into the multicopy plasmid pKK223-3 under the control of the tac promoter. The resulting recombinant plasmid pFR1 expresses isochorismatase amounting to over 50% of the total cellular protein. The enzyme has been purified to homogeneity and a convenient assay developed. The enzyme has a Km for isochorismate of 14.7 microM and a turnover number of 600 min-1. By use of 1H NMR spectroscopy, the progress of the reaction was followed with the expected formation of 2,3-dihydro-2,3-dihydroxybenzoate product. Several substrate analogues were also utilized by the enzyme including chorismic acid, the immediate precursor to isochorismic acid in the enterobactin biosynthetic pathway.  相似文献   

8.
Synthetic enterobactin and enantioenterobactin (D-seryl enterobactin) have been examined for the ability to transport iron in Escherichia coli. Failure of the unnatural, D-serine-derived material to support growth of E. coli mutants indicates outer membrane receptor specificity for the naturally occurring complex having an L-seryl backbone and the delta-cis configuration of the Fe(III).catecholate center. Enantioenterobactin was markedly less effective in protecting cells against colicin B compared to synthetic or natural enterobactin.  相似文献   

9.
Enterobactin-mediated iron transport in Pseudomonas aeruginosa.   总被引:21,自引:9,他引:12       下载免费PDF全文
K Poole  L Young    S Neshat 《Journal of bacteriology》1990,172(12):6991-6996
A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin. Apparently, at least two uptake systems for ferrienterobactin exist in P. aeruginosa: one of higher affinity which is specifically inducible by enterobactin under iron-limiting conditions and the second, of lower affinity, which is also inducible under iron-limiting conditions but is independent of enterobactin for induction.  相似文献   

10.
The human enteropathogen Campylobacter jejuni, like many bacteria, employs siderophores such as enterobactin for cellular uptake of ferric iron. This transport process has been shown to be essential for virulence and presents an attractive opportunity for further study of the permissiveness of this pathway to small-molecule intervention and as inspiration for the development of synthetic carriers that may effectively transport cargo into Gram-negative bacteria. In this work, we have developed a facile and robust microscale assay to measure growth recovery of C. jejuni NCTC 11168 in liquid culture as a result of ferric iron uptake. In parallel, we have established the solid-phase synthesis of catecholamide compounds modeled on enterobactin fragments. Applying these methodological developments, we show that small synthetic iron chelators of minimal dimensions provide ferric iron to C. jejuni with equal or greater efficiency than enterobactin.  相似文献   

11.
The specificity of the outer membrane protein receptor for ferric enterobactin transport in Escherichia coli and the mechanism of enterobactin-mediated transport of ferric ions across the outer membrane have been studied. Transport kinetic and inhibition studies with ferric enterobactin and synthetic structural analogs have mapped the parts of the molecule important for receptor binding. The ferric complex of the synthetic structural analog of enterobactin, 1,3,5-N,N',N'-tris-(2,3-dihydroxybenzoyl)triaminomethylbenzene (MECAM), was transported with the same maximum velocity as was ferric enterobactin. A double-label transport assay with [59Fe, 3H]MECAM showed that the ligand and the metal are transported across the outer membrane at an identical rate. Under the growth conditions used, large fractions of the transported complexes were available for exchange across the outer membrane when a large excess of extracellular complex was added to the cell suspension; at least 60% of the internalized [59Fe]enterobactin exchanged with extracellular [55Fe]enterobactin. Internalized [59Fe, 3H]MECAM was released from the cell as the intact complex when either unlabeled Fe-MECAM or Fe-enterobactin was added extracellularly. The results suggest a mechanism of active transport of unmodified coordination complex across the outer membrane with possible accumulation in the periplasm.  相似文献   

12.
13.
Abstract Pseudomonas aeruginosa is known to have an inducible uptake system for the enterobacterial siderophore enterobactin. In this work we have examined iron transport mediated by the biosynthetic precursor 2,3-dihydroxybenzoic acid and N -(2,3-dihydroxybenzoyl)- l -serine, a breakdown product of enterobactin. Iron complexed with 2,3-dihydroxybenzoyl-L-serine was transported into P. aeruginosa IA1 via a transport system which is energy-dependent and iron-repressible. The rate of transport was not altered by growing the cells in the presence of either pyoverdin or pyochelin, which have been shown previously to induce transport via that system. Growth of the cells in the presence of enterobactin did cause an increase in the rate of transport, indicating that the complex can be transported by the inducible enterobactin uptake system, but also that a separate system must exist. In contrast, transport of iron complexed with 2,3-dihydroxybenzoic acid was neither iron-repressible nor strongly energy-dependent, from which we conclude that there must be a novel mode of transport not characteristic of iron-siderophore transport systems.  相似文献   

14.
While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3 background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.  相似文献   

15.
The multicopper oxidase CueO had previously been demonstrated to exhibit phenoloxidase activity and was implicated in intrinsic copper resistance in Escherichia coli. Catecholates can potentially reduce Cu(II) to the prooxidant Cu(I). In this report we provide evidence that CueO protects E. coli cells by oxidizing enterobactin, the catechol iron siderophore of E. coli, in the presence of copper. In vitro, a mixture of enterobactin and copper was toxic for E. coli cells, but the addition of purified CueO led to their survival. Deletion of fur resulted in copper hypersensitivity that was alleviated by additional deletion of entC, preventing synthesis of enterobactin. In addition, copper added together with 2,3-dihydroxybenzoic acid or enterobactin was able to induce a Phi(cueO-lacZ) operon fusion more efficiently than copper alone. The reaction product of the 2,3-dihydroxybenzoic acid oxidation by CueO that can complex Cu(II) ions was determined by gas chromatography-mass spectroscopy and identified as 2-carboxymuconate.  相似文献   

16.
The enterobactin system for iron transport in Escherichia coli is well characterized with the exception of the mechanism of enterobactin secretion to the extracellular environment. Escherichia coli membrane protein P43, encoded by ybdA in the chromosomal region of genes involved in enterobactin synthesis, shows strong homology to the 12-transmembrane segment major facilitator superfamily of export pumps. A P43-null mutation was created and siderophore nutrition assays, performed with a panel of E. coli strains expressing one or more outer membrane receptors for enterobactin-related compounds, demonstrated that the P43 mutant was unable to secrete enterobactin efficiently. Products released from the mutant strain were identified with thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC), revealing that the P43 mutant secretes little, if any, enterobactin, but elevated levels of enterobactin breakdown products 2,3- dihydroxybenzoylserine (DHBS) monomer, dimer, and trimer. These data establish that P43 is a critical component of the E. coli enterobactin secretion machinery and provides a rationale for the designation of the previous genetic locus ybdA as entS to reflect its relevant biological function.  相似文献   

17.
An outer membrane preparation from cells of Escherichia coli K-12 grown in low iron medium was found to retain ferric enterobactin binding activity following solubilization in a Tris-HCl, Na2EDTA buffer containing Triton X-100. Activity was measured by means of a DEAE-cellulose column which separated free and receptor bound ferric enterobactin. The binding activity was greatly reduced in preparations obtained from cells grown in iron rich media or from cells of a colicin B resistant mutant grown in either high or low iron media. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis enabled correlation of this lack of activity to a single band missing in the outer membrane profile of the colicin B mutant. Evidence was obtained for in vitro competition between ferric enterobactin and colicin B for the extracted receptor. The binding specificity of the extracted receptor was examined by competition between ferric enterobactin and several iron chelates including a carbocyclic analogue of enterobactin, cis-1,5,9-tris(2,3-dihydroxybenzamido)cyclododecane. The ferric form of the latter compound supported growth of siderophore auxotrophs, apparently without hydrolysis to dihydroxybenzoic acid and resynthesis into enterobactin. These data may require revision of the accepted mechanism of enterobactin mediated iron utilization.  相似文献   

18.
Salmonella typhimurium possesses two outer membrane receptor proteins, IroN and FepA, which have been implicated in the uptake of enterobactin. To determine whether both receptors have identical substrate specificities, fepA and iroN mutants and a double mutant were characterized. While both receptors transported enterobactin, the uptake of corynebactin and myxochelin C was selectively mediated by IroN and FepA, respectively.  相似文献   

19.
Siderocalin Q83 is a small soluble protein that has the ability to bind two different ligands (enterobactin and arachidonic acid) simultaneously in two distinct binding sites. Here we report that Q83 exhibits an intriguing dynamic behavior. In its free form, the protein undergoes significant micro-to-millisecond dynamics. When binding arachidonic acid, the motions of the arachidonic acid binding site are quenched while the dynamics at the enterobactin binding site increases. Reciprocally, enterobactin binding to Q83 quenches the motions at the enterobactin binding site and increases the slow dynamics at the arachidonic acid binding site. Additionally, in the enterobactin-bound state, the excited state of the arachidonic acid binding site resembles the arachidonic acid-bound state. These observations strongly suggest an allosteric regulation where binding of one ligand enhances the affinity of Q83 for the other one. Additionally, our data strengthen the emerging view of proteins as dynamic ensembles interconverting between different sub-states with distinct functionalities.  相似文献   

20.
Escherichia coli produces the iron-chelating compound enterobactin to enable growth under iron-limiting conditions. After biosynthesis, enterobactin is released from the cell. However, the enterobactin export system is not fully understood. Previous studies have suggested that the outer membrane channel TolC is involved in enterobactin export. There are several multidrug efflux transporters belonging to resistance-nodulation-cell division (RND) family that require interaction with TolC to function. Therefore, several RND transporters may be responsible for enterobactin export. In this study, we investigated whether RND transporters are involved in enterobactin export using deletion mutants of multidrug transporters in E. coli. Single deletions of acrB, acrD, mdtABC, acrEF, or mdtEF did not affect the ability of E. coli to excrete enterobactin, whereas deletion of tolC did affect enterobactin export. We found that multiple deletion of acrB, acrD, and mdtABC resulted in a significant decrease in enterobactin export and that plasmids carrying the acrAB, acrD, or mdtABC genes restored the decrease in enterobactin export exhibited by the ΔacrB acrD mdtABC mutant. These results indicate that AcrB, AcrD, and MdtABC are required for the secretion of enterobactin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号