共查询到20条相似文献,搜索用时 0 毫秒
1.
M M Yllera-Fernández N Crozet M Ahmed-Ali 《Molecular reproduction and development》1992,32(3):271-276
The distribution of microtubules was studied during fertilization of the rabbit oocyte by immunofluorescence microscopy after staining with an anti-alpha-tubulin antibody. In ovulated oocytes, microtubules were found exclusively in the meiotic spindle. At fertilization, the paternal centrosome generated sperm astral microtubules. During pronuclear development, the sperm aster increased in size, and microtubules extended from the male pronucleus to the egg center and towards the female pronucleus. These observations indicate that microtubules emanating from the sperm centrosome were involved in the movements leading to the union of the male and female pronuclei. At late pronuclear stage, microtubules surrounded the adjacent pronuclei. The mitotic spindle that emerged from the perinuclear microtubules contained broad anastral poles. 相似文献
2.
Summary Mammalian gametogenesis results in the production of highly specialized cells, sperm and oocytes, that are complementary in their arsenal of organelles and molecules necessary for normal embryonic development. Consequently, some of the zygotic structures, as illustrated in this review on the centrosome, are a combination of complementary paternal and maternal contributions. Mammalian oocytes are deprived of their centrioles during oogenesis, yet at the same time they generate a huge cytoplasmic reserve of centrosomal proteins. The active centrosome of spermatogenic stem cells is reduced to a single centriole that does not possess microtubule-nucle-ating activity. This centrosomal activity is restored at fertilization, when the sperm centriole is released into the oocyte cytoplasm, from which it attracts the oocyte-derived proteins of pericentriolar material and ultimately converts itself into an active zygotic centrosome. Subsequently, the microtubules around the zygotic centrosome are organized into a radial array called the sperm aster, that guides the apposition of male and female pronuclei, and the union of paternal and maternal genomes in the cytoplasm of a fertilized oocyte. The original sperm centriole duplicates and gives rise to the first mitotic spindle. This biparental mode of centrosome inheritance is seen in most mammals, except for rodents, where both centrioles are degraded during spermiogenesis and the zygotic centrosome is organized without any paternal contributions. The studies of centrosomal inheritance at fertilization provide the platform for designing new safe methods of assisted-reproduction and infertility treatments in humans. 相似文献
3.
《The Journal of cell biology》1993,122(2):349-359
We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the neuron. 相似文献
4.
Abal M Piel M Bouckson-Castaing V Mogensen M Sibarita JB Bornens M 《The Journal of cell biology》2002,159(5):731-737
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the cell periphery has been described, but whether or not the minus ends of these MTs are anchored at the centrosome is not known. Here, we show that release of short MTs from the centrosome is frequent in migrating cells and that their transport toward the cell periphery is blocked when dynein activity is impaired. We further show that MT release, but not MT nucleation or polymerization dynamics, is abolished by overexpression of the centrosomal MT-anchoring protein ninein. In addition, a dramatic inhibition of cell migration was observed; but, contrary to cells treated by drugs inhibiting MT dynamics, polarized membrane ruffling activity was not affected in ninein overexpressing cells. We thus propose that the balance between MT minus-end capture and release from the centrosome is critical for efficient cell migration. 相似文献
5.
《Current biology : CB》2023,33(5):R180-R182
6.
Centrosomes undergo cell cycle-dependent changes in shape and separations, changes that govern the organization of the cytoskeleton. The cytoskeleton is largely organized by the centrosome; however, this investigation explores the importance of cytoskeletal elements in directing centrosome shape. Since the sea urchin egg during fertilization and mitosis displays dramatic and synchronous changes in centrosome shape, the effects of cytoskeletal inhibitors on centrosome compaction, expansion, and separation were explored by the use of anticentrosome immunofluorescence microscopy. Centrosome expansion and separation was studied during two phases: the transition after sperm incorporation, when the compact sperm centrosome enlarges and the sperm aster develops, and from prometaphase to telophase, when the compact spindle poles enlarge. Compaction was investigated when the dispersed centrosome at interphase condenses into the two spindle poles at prometaphase. Although centrosome expansion and separation typically occur concurrently, beta-mercaptoethanol results in centrosome separation independent of expansion. Microtubule inhibitors prevent centrosome expansion and separation, and expanded centrosomes collapse. Since pronuclear union is arrested by microtubule inhibitors, this treatment also affords the opportunity to explore the relative attractiveness of the male and female pronuclei for these centrosomal antigens. Both pronuclei acquire centrosomal material; though only the male centrosome is capable of organizing a functional bipolar mitotic apparatus at first division, the female centrosome nucleates a monaster. Microfilament inhibition (cytochalasin D) prevents centrosome separation but not expansion or compaction. These results demonstrate that as the centrosome shapes the cytoskeleton, the cytoskeleton alters centrosome shape. 相似文献
7.
Calcium has an essential signaling, physiological, and regulatory role during sexual reproduction in flowering plants; elevation of calcium amounts is an accurate predictor of plant fertility. Calcium is present in three forms: (1) covalently bound calcium, (2) loosely bound calcium typically associated with fixed and mobile anions (ionic bonding); and (3) cytosolic free calcium-an important secondary messenger in cell signaling. Pollen often requires calcium for germination. Pollen tube elongation typically relies on external calcium stores in the pistil. Calcium establishes polarity of the pollen tube and forms a basis for pulsatory growth. Applying calcium on the tip may alter the axis; thus calcium may have a role in determining the directionality of tube elongation. In the ovary and ovule, an abundance of calcium signals receptivity, provides essential mineral nutrition, and guides the pollen tube in some plants. Calcium patterns in the embryo sac also correspond to synergid receptivity, reflecting programmed cell death in one synergid cell that triggers degeneration and prepares this cell to receive the pollen tube. Male gametes are released in the synergid, and fusion of the gametes requires calcium, according to in vitro fertilization studies. Fusion of plant gametes in vitro triggers calcium oscillations evident in both the zygote and primary endosperm during double fertilization that are similar to those in animals. 相似文献
8.
The distribution of actin was studied during early events of sheep fertilization by fluorescence microscopy after staining with 7-nitrobenz-2-oxal-1.3 diazole (NBD)-phallacidin and anti-actin antibody and by electron microscopy after heavy meromyosin labelling. Unfertilized and fertilized eggs exhibited a continuous band of fluorescence with both NBD-phallacidin and anti-actin antibody. Unlike in mice, no high concentration of actin overlying the spindle was detected in ovulated sheep oocytes. At the site of sperm head incorporation, the fertilization cone developed above the decondensing male chromatin and was underlined by a submembranous area rich in microfilaments. A similar actin network was observed in the cortex of the second polar body. Cytochalasin D was used to investigate the role of actin during the fertilization process. This drug did not prevent sperm fusion and incorporation but inhibited polar body abstriction and fertilization cone development and retarded sperm tail incorporation. Moreover, in the presence of the drug, the anchorage of the metaphase II spindle at the surface of the egg was destroyed. The role of microfilaments in these early events is discussed. 相似文献
9.
A. H. Sathananthan G. Lyons V. Dharmawardena D. Pushett I. Lewis A. Trounson 《Protoplasma》1999,206(4):263-269
Summary Inheritance of the centrosome (centriole) and its behaviour during fertilization and embryogenesis of cattle is presented. The bovine embryo follows the human pattern of centriole behaviour, which is common to most animals including large mammals. Thus, most mammals obey Boveri's rule of paternal centrosomal inheritance and perpetuation, whereas the mouse is an exception to the rule, showing maternal inheritance. The sperm centrosome was traced from fertilization to the hatching blastocyst stage in the cow and its presence was confirmed at every stage of cleavage, as reported in the human. It is concluded that the bovine embryo is a more appropriate model than the mouse for research in fertilization and assisted-reproduction technology. 相似文献
10.
When cultured on polylysine, rat sympathetic neurons extend modest lamellae which contain a mass of relatively short non-aligned microtubules. Microtubules display movements, but these movements do not result in any obvious alterations in the overall configuration of the array. Application of a mixture of growth factors called matrigel results in a rapid expansion of the lamellae followed by the outgrowth of axons. Microtubules undergo rapid behavioral changes that result in dramatic alterations in the microtubule array. Microtubules become significantly longer, and extend to the periphery of the lamellae where they invade newly-forming axons. The microtubules align with one another and relative to the cell cortex, and draw together into bundles. Microtubules within a bundle move apart as well, particularly at the tips of developing axons. These observations demonstrate a complexity of microtubule behaviors, some of which can be explained by interactions with actin and/or by forces generated by molecular motor proteins. 相似文献
11.
12.
Microtubule transport and assembly during axon growth 总被引:2,自引:1,他引:1
《The Journal of cell biology》1996,133(1):151-157
There is controversy concerning the mechanisms by which the axonal microtubule (MT) array is elaborated, with some models focusing on MT assembly and other models focusing on MT transport. We have proposed a composite model in which MT assembly and transport are both important (Joshi, H.C., and P.W. Baas. 1993. J. Cell Biol. 121:1191-1196). In the present study, we have taken a novel approach to evaluate the merits of this proposal. Biotinylated tubulin was microinjected into cultured neurons that had already grown short axons. The axons were then permitted to grow longer, after which the cells were prepared for immunoelectron microscopic analyses. We reasoned that any polymer that assembled or turned over subunits after the introduction of the probe should label for biotin, while any polymer that was already assembled but did not turnover should not label. Therefore, the presence in the newly grown region of the axon of any unlabeled MT polymer is indicative of MT transport. In sampled regions, the majority of the polymer was labeled, indicating that MT assembly events are active during axon growth. Varying amounts of unlabeled polymer were also present in the newly grown regions, indicating that MT transport also occurs. Together these findings demonstrate that MT assembly and transport both contribute to the elaboration of the axonal MT array. 相似文献
13.
The development of cell polarity in response to chemoattractant stimulation in human polymorphonuclear neutrophils (PMNs) is characterized by the rapid conversion from round to polarized morphology with a leading lamellipod at the front and a uropod at the rear. During PMN polarization, the microtubule (MT) array undergoes a dramatic reorientation toward the uropod that is maintained during motility and does not require large-scale MT disassembly or cell adhesion to the substratum. MTs are excluded from the leading lamella during polarization and motility, but treatment with a myosin light chain kinase inhibitor (ML-7) or the actin-disrupting drug cytochalasin D causes an expansion of the MT array and penetration of MTs into the lamellipod. Depolymerization of the MT array before stimulation caused 10% of the cells to lose their polarity by extending two opposing lateral lamellipodia. These multipolar cells showed altered localization of a leading lamella-specific marker, talin, and a uropod-specific marker, CD44. In summary, these results indicate that F-actin- and myosin II-dependent forces lead to the development and maintenance of MT asymmetry that may act to reinforce cell polarity during PMN migration. 相似文献
14.
Summary Calcium distribution in ovules ofTorenia fournieri was studied by electron energy loss spectroscopy and transmission electron microscopic visualization of calcium antimonate precipitates. High calcium levels were found in the ovules ofT. fournieri. Calcium is situated mainly in extracellular regions before fertilization, including the surface of embryo sac, in the mucilage, and among the cells of the egg apparatus. Intracellular calcium was found only in the nucellar cells around the embryo sac and in the epidermis of the central axis and funiculus. After pollination, a labyrinthine structure (coralloid-like cell wall formation) develops on the micropylar surfaces of the egg apparatus that contain high levels of calcium. Calcium levels increase in the degenerating synergid after the penetration of the pollen tube. Calcium-antimonate precipitates are abundant in vacuoles of the disrupted synergid and pollen tube cytoplasm.Abbreviations EELS
electron energy loss spectroscopy
- EDX
energy-dispersive X-ray microanalysis
- LS
labyrinthine structure 相似文献
15.
Summary Tip cells of dark-grown protonemata of the mossCeratodon purpureus are negatively gravitropic (grow upward). They possess a unique longitudinal zonation: (1) a tip group of amylochloroplasts in the apical dome, (2) a plastid-free zone, (3) a zone of significant plastid sedimentation, and (4) a zone of mostly non-sedimenting plastids. Immunofluorescence of vertical cells showed microtubules distributed throughout the cytoplasm in a mostly axial orientation extending through all zones. Optical sectioning revealed a close spatial association between microtubules and plastids. A majority (two thirds) of protonemata gravistimulated for >20 min had a higher density of microtubules near the lower flank compared to the upper flank in the plastid-free zone. This apparent enrichment of microtubules occurred just proximal to sedimented plastids and near the part of the tip that presumably elongates more to produce curvature. Fewer than 5% of gravistimulated protonemata had an enrichment in microtubules near the upper flank, whereas 14% of vertical protonemata were enriched near one of the side walls. Oryzalin and amiprophos-methyl (APM) disrupted microtubules, gravitropism, and normal tip growth and zonation, but did not prevent plastid sedimentation. We hypothesize that a microtubule redistribution plays a role in gravitropism in this protonema. This appears to be the first report of an effect of gravity on microtubule distribution in plants.Abbreviations APM
amiprophos-methyl
- DIC
differential interference contrast
- DMSO
dimethyl sulfoxide
- EGTA
ethylene glycolbis-(-amino-ethylether) N,N,N',N'-tetraacetic acid
- FITC
fluorescein isothiocyanate
- GS
gravitropic stimulus
- MT
microtubule
- PIPES
piperazine-N,N'-bis-2-ethanesulfonic acid 相似文献
16.
Summary The microtubule cytoskeleton and cytoplasmic organization ofAllomyces macrogynus during zoosporogenesis was studied using light and electron microscopy. Indirect immunofluorescence methods revealed that the microtubule cytoskeleton progressed through three distinct stages of cytoplasmic distribution during zoospore development. During the first 10 minutes of zoosporogenesis, nuclei were strictly located in the periphery of the cytoplasm, and their associated centrosomes were positioned immediately adjacent to the plasma membrane. Microtubules emanated from centrosomes into the surrounding cytoplasm. Within 20 to 30 min after the induction of zoosporangial cleavage, nuclei migrated to new positions throughout the sporangial cytoplasm and microtubule arrays were primarily organized at and emanated from nuclear surfaces. During the final stage of zoosporogenesis, nuclear envelope-associated microtubules were not observed. Instead, primary organization of cytoplasmic microtubules returned to centrosomes (i.e., basal bodies) and flagella formation was evident. The MPM-2 antibody, which recognizes phosphorylated epitopes of several proteins associated with microtubule nucleation, stained centrosome regions throughout zoosporogenesis but did not stain nuclear envelopes.Abbreviations BSA
bovine serum albumin
- DAPI
4,6-diamino-2-phenylindole
- dH2O
deionized water
- DMSO
dimethyl sulfoxide
- DS
dilute salts solution
- G/5 0.1%
glucose medium
- LN2
liquid nitrogen
- LSCM
laser scanning confocal microscopy
- MTOC
microtubule-organizing center
- PBS
phosphate buffered saline
- PCM
pericentriolar matrix
- TEM
transmission electron microscopy
- VELM
videoenhanced light microscopy 相似文献
17.
As axons elongate, tubulin, which is synthesized in the cell body, must be transported and assembled into new structures in the axon. The mechanism of transport and the location of assembly are presently unknown. We report here on the use of tubulin tagged with a photoactivatable fluorescent group to investigate these issues. Photoactivatable tubulin, microinjected into frog embryos at the two-cell stage, is incorporated into microtubules in neurons obtained from explants of the neural tube. When activated by light, a fluorescent mark is made on the microtubules in the axon, and transport and turnover can be visualized directly. We find that microtubules are generated in or near the cell body and continually transported distally as a coherent phase of polymer during axon elongation. This vectorial polymer movement was observed at all levels on the axon, even in the absence of axonal elongation. Measurements of the rate of polymer translocation at various places in the axon suggest that new polymer is formed by intercalary assembly along the axon and assembly at the growth cone in addition to transport of polymer from the cell body. Finally, polymer movement near the growth cone appeared to respond in a characteristic manner to growth cone behavior, while polymer proximally in the axon moved more consistently. These results suggest that microtubule translocation is the principal means of tubulin transport and that translocation plays an important role in generating new axon structure at the growth cone. 相似文献
18.
Anastassiia Vertii Wendy Zimmerman Maria Ivshina Stephen Doxsey 《Molecular biology of the cell》2015,26(19):3451-3463
The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders the centrosome nonfunctional. Heat-activated degradation is centrosome selective, as other nonmembranous organelles (midbody, kinetochore) and membrane-bounded organelles (mitochondria) remain largely intact. Heat-induced centrosome inactivation was rescued by targeting Hsp70 to the centrosome. In contrast, Hsp70 excluded from the centrosome via targeting to membranes failed to rescue, as did chaperone inactivation. This indicates that there is a balance between degradation and chaperone rescue at the centrosome after HS. This novel mechanism of centrosome regulation during fever contributes to immunological synapse formation. Heat-induced centrosome inactivation is a physiologically relevant event, as centrosomes in leukocytes of febrile patients are disrupted. 相似文献
19.
20.
Microtubule rearrangements during mitosis in multinucleate cells 总被引:1,自引:0,他引:1
R Armas-Portela N Paweletz H P Zimmermann S Ghosh 《Cell motility and the cytoskeleton》1988,9(3):254-263
The peroxidase-antiperoxidase (PAP) method for the detection of polymerized tubulin has been used to study the microtubule rearrangements during mitosis in PtK1 and HeLa multinucleate cells obtained by polyethyleneglycol (PEG)-mediated fusion. We demonstrate here that the transition of the microtubular cytoskeleton from interphase to mitosis is an inducible event and independent of the factor(s) responsible for chromatin condensation and nuclear envelope breakdown. However, for the induction of the microtubule rearrangements nuclear envelope breakdown is required. At midprophase, cytoskeletal microtubule rearrangements start for multinucleate PtK1 cells, whereas in HeLa cells such changes are delayed, and a more abrupt transition is observed here. After complete nuclear envelope breakdown (prometaphase) mitotic asters and spindles but no cytoplasmic (interphase) microtubuli can be observed in both systems. Metaphase is characterized by an interaction between the different mitotic poles which show the form of bipolar spindles, but individual separated mitotic poles far removed from the chromatin can also be seen. 相似文献