共查询到20条相似文献,搜索用时 15 毫秒
1.
Seo D Tomioka A Kusumoto N Kamo M Enami I Sakurai H 《Biochimica et biophysica acta》2001,1503(3):377-384
Four ferredoxin (Fd) fractions, namely, FdA-D were purified from the green sulfur bacterium Chlorobium tepidum. Their absorption spectra are typical of 2[4Fe-4S] cluster type Fds with peaks at about 385 and 280 nm and a shoulder at about 305 nm. The A(385)/A(280) ratios of the purified Fds were 0.76-0.80. Analysis of the N-terminal amino acid sequences of these Fds (15-25 residues) revealed that those of FdA and FdB completely agree with those deduced from the genes, fdx3 and fdx2, respectively, found in this bacterium (Chung and Bryant, personal communication). The N-terminal amino acid sequences of FdC and FdD (15 residues) were identical, and agree with that deduced from the gene fdx1 (Chung and Bryant, personal communication). The A(385) values of these Fds were unchanged when they were stored for a month at -80 degrees C under aerobic conditions and decreased by 10-15% when they were stored for 6 days at 4 degrees C under aerobic conditions, indicating that they are not extremely unstable. In the presence of Fd-NADP(+) reductase from spinach, and a purified reaction center (RC) preparation from C. tepidum composed of five kinds of polypeptides, these Fds supported the photoreduction of NADP(+) at room temperature with the following K(m) and V(max) (in micromol NADP(+) micromol BChl a(-1) h(-1)): FdA, 2.0 microm and 258; FdB, 0.49 microM and 304; FdC, 1.13 microM and 226; FdD, 0.5 microM and 242; spinach Fd, 0.54 microM and 183. The V(max) value of FdB was more than twice that previously reported for purified RC preparations from green sulfur bacteria. 相似文献
2.
The vibrational properties of the primary donor P840 in the reaction center (RC) of the green sulfur bacterium Chlorobium tepidum and its interactions with the surrounding protein environment have been investigated by Fourier transform infrared (FTIR)
difference spectroscopy at cryogenic temperatures. By using the step-scan technique with a time resolution of 5 μs on RCs
that had been depleted of the iron–sulfur electron acceptors, the formation and decay of the triplet state 3P840 have been followed in infrared for the first time. The 3P840/P840 FTIR difference spectrum is compared to the P840
+/P840 FTIR difference spectrum measured under identical conditions on untreated RCs and recorded with the same step-scan set-up.
The latter P840
+/P840 difference spectrum is essentially the same as those measured under steady-state conditions using the more conventional continuous
illumination method. Comparison of the 3P840/P840 and P840
+/P840 spectra provides unambiguous assignment of the vibration of the 9-keto C=O group(s) of P840 at 1684 cm−1 as the only common negative band in the two spectra. This frequency corresponds to carbonyl group(s) free from hydrogen bonding
interactions. The obtained results are discussed in the framework of the structure and photochemistry of the primary donor
P840.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
3.
Flash-induced optical kinetics at room temperature of cytochrome (Cyt) c
551 and an Fe-S center (CFA/CFB) bound to a purified reaction center (RC) complex from the green sulfur photosynthetic bacterium Chlorobium tepidum were studied. At 551 nm, the flash-induced absorbance change decayed with a t
1/2 of several hundred ms, and the decay was accelerated by 1-methoxy-5-methylphenazinium methyl sulfate (mPMS). In the blue region, the absorbance change was composed of mPMS-dependent (Cyt) and mPMS-independent component (CFA/CFB) which decayed with a t
1/2 of 400–650 ms. Decay of the latter was effectively accelerated by benzyl viologen (Em –360 mV) and methyl viologen (–440 mV), and less effectively by triquat (–540 mV). The difference spectrum of Cyt c had negative peaks at 551, 520 and 420 nm, with a positive rise at 440 to 500 nm. The difference spectrum of CFA/CFB resembled P430 of PSI, and had a broad negative peak at 430435 nm.Abbreviations (B)Chl
(bacterio)chlorophyll
- Cyt
cytochrome
- FA, FB and FX
iron-sulfur center A, B and X of Photosystem I
- CFA, CFB and CFX
FA-,FB- and FX-like Fe-S center of Chlorobium
- mPMS
1-methoxy-5-methylphenazinium methyl sulfate
- PSI
Photosystem I
- RC
reaction center 相似文献
4.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzes the incorporation of atmospheric CO(2) into ribulose 1,5-bisphosphate (RuBP). RuBisCOs are classified into four forms based on sequence similarity: forms I, II and III are bona fide RuBisCOs; form IV, also called the RuBisCO-like protein (RLP), lacks several of the substrate binding and catalytic residues and does not catalyze RuBP-dependent CO(2) fixation in vitro. To contribute to understanding the function of RLPs, we determined the crystal structure of the RLP from Chlorobium tepidum. The overall structure of the RLP is similar to the structures of the three other forms of RuBisCO; however, the active site is distinct from those of bona fide RuBisCOs and suggests that the RLP is possibly capable of catalyzing enolization but not carboxylation. Bioinformatic analysis of the protein functional linkages suggests that this RLP coevolved with enzymes of the bacteriochlorophyll biosynthesis pathway and may be involved in processes related to photosynthesis. 相似文献
5.
Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum 总被引:3,自引:0,他引:3 下载免费PDF全文
The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C. tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants by converting phytoene into lycopene using two plant-like desaturases (CrtP and CrtQ) and a plant-like cis-trans isomerase (CrtH) and thus differs from the pathway known in all other bacteria. In contrast to the situation in cyanobacteria and plants, the construction of a crtB mutant completely lacking carotenoids demonstrates that carotenoids are not essential for photosynthetic growth of green sulfur bacteria. However, the bacteriochlorophyll a contents of mutants lacking colored carotenoids (crtB, crtP, and crtQ mutants) were decreased from that of the wild type, and these mutants exhibited a significant growth rate defect under all light intensities tested. Therefore, colored carotenoids may have both structural and photoprotection roles in green sulfur bacteria. The ability to manipulate the carotenoid composition so dramatically in C. tepidum offers excellent possibilities for studying the roles of carotenoids in the light-harvesting chlorosome antenna and iron-sulfur-type (photosystem I-like) reaction center. The phylogeny of carotenogenic enzymes in green sulfur bacteria and green filamentous bacteria is also discussed. 相似文献
6.
Proteomic analysis of chlorosome-depleted membranes of the green sulfur bacterium Chlorobium tepidum
Green sulfur bacteria are obligate anaerobic phototrophs, which in addition to outer and plasma membranes contain chlorosomes. The analysis of the membrane proteome of Chlorobium tepidum from chlorosome-depleted membranes is described in this study. The membranes were purified by sucrose density centrifugation and characterized by 1-DE and 2-DE coupled with MS, absorption spectroscopy, and electron microscopy. 1-DE and 2-DE were employed to analyze the membrane proteins and to characterize the capabilities of the methods. Solubilization of the membrane proteins prior to 2-DE was improved by using a series of zwitterionic detergents. Based on the resolved spots after 2-DE, the combination of amidosulfobetaine 14 with Triton X-100 is more efficient than the combination of CHAPS, N-decyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, and Triton X-100. From the application of 1-DE and 2-DE, 167 and 202 unique proteins were identified, respectively, using PMF by MALDI-TOF MS. Both methods resulted in the detection of 291 different proteins of which only 88 were predicted membrane proteins, indicating the limitation of membrane protein detection after separation with electrophoresis methods. In addition, 53 of these proteins were identified as outer membrane proteins. 相似文献
7.
H W Rémigy H Stahlberg D Fotiadis S A Müller B Wolpensinger A Engel G Hauska G Tsiotis 《Journal of molecular biology》1999,290(4):851-858
The three-dimensional (3D) structure of the reaction center (RC) complex isolated from the green sulfur bacterium Chlorobium tepidum was determined from projections of negatively stained preparations by angular reconstitution. The purified complex contained the PscA, PscC, PscB, PscD subunits and the Fenna-Matthews-Olson (FMO) protein. Its mass was found to be 454 kDa by scanning transmission electron microscopy (STEM), indicating the presence of two copies of the PscA subunit, one copy of the PscB and PscD subunits, three FMO proteins and at least one copy of the PscC subunit. An additional mass peak at 183 kDa suggested that FMO trimers copurify with the RC complexes. Images of negatively stained RC complexes were recorded by STEM and aligned and classified by multivariate statistical analysis. Averages of the major classes indicated that different morphologies of the elongated particles (length=19 nm, width=8 nm) resulted from a rotation around the long axis. The 3D map reconstructed from these projections allowed visualization of the RC complex associated with one FMO trimer. A second FMO trimer could be correspondingly accommodated to yield a symmetric complex, a structure observed in a small number of side views and proposed to be the intact form of the RC complex. 相似文献
8.
Soluble cytochrome c-554 (M
r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date. 相似文献
9.
Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. 总被引:1,自引:1,他引:1 下载免费PDF全文
The broad-host-range IncQ group plasmids pDSK519 and pGSS33 were transferred by conjugation from Escherichia coli into the thermophilic green sulfur bacterium Chlorobium tepidum. C. tepidum exconjugants expressed the kanamycin and ampicillin-chloramphenicol resistances encoded by pDSK519 and pGSS33, respectively. Ampicillin resistance was a particularly good marker for selection in C. tepidum. Both pDSK519 and pGSS33 were stably maintained in C. tepidum at temperatures below 42 degrees C and could be transferred between C. tepidum and E. coli without modifications. Conjugation frequencies ranged from 10(-1) to 10(-4) exconjugants per donor cell, and frequencies of 10(-2) to 10(-3) were consistently obtained when ampicillin resistance was used as a selectable marker. Methods for growth of C. tepidum on agar, isolation of plating strains and antibiotic-resistant mutants of wild-type C. tepidum cells, and optimum conditions for conjugation were also investigated. 相似文献
10.
Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild-type C. tepidum at 40 degrees C on agar plates could be completely inhibited by 100 microg of gentamicin ml(-1), 2 microg of erythromycin ml(-1), 30 microg of chloramphenicol ml(-1), or 1 microg of tetracycline ml(-1) or a combination of 300 microg of streptomycin ml(-1) and 150 microg of spectinomycin ml(-1). Transformation was performed by spotting cells and DNA on an agar plate for 10 to 20 h. Transformation frequencies on the order of 10(-7) were observed with gentamicin and erythromycin markers, and transformation frequencies on the order of 10(-3) were observed with a streptomycin-spectinomycin marker. The frequency of spontaneous mutants resistant to gentamicin, erythromycin, or spectinomycin-streptomycin was undetectable or significantly lower than the transformation frequency. Transformation with the gentamicin marker was observed when the transforming DNA contained 1 or 3 kb of total homologous flanking sequence but not when the transforming DNA contained only 0.3 kb of homologous sequence. Linearized plasmids transformed at least an order of magnitude better than circular plasmids. This work forms a foundation for the systematic targeted inactivation of genes in C. tepidum, whose 2.15-Mb genome has recently been completely sequenced. 相似文献
11.
Two genes encoding new carotenoid-modifying enzymes in the green sulfur bacterium Chlorobium tepidum 下载免费PDF全文
The green sulfur bacterium Chlorobium tepidum produces chlorobactene as its primary carotenoid. Small amounts of chlorobactene are hydroxylated by the enzyme CrtC and then glucosylated and acylated to produce chlorobactene glucoside laurate. The genes encoding the enzymes responsible for these modifications of chlorobactene, CT1987, and CT0967, have been identified by comparative genomics, and these genes were insertionally inactivated in C. tepidum to verify their predicted function. The gene encoding chlorobactene glucosyltransferase (CT1987) has been named cruC, and the gene encoding chlorobactene lauroyltransferase (CT0967) has been named cruD. Homologs of these genes are found in the genomes of all sequenced green sulfur bacteria and filamentous anoxygenic phototrophs as well as in the genomes of several nonphotosynthetic bacteria that produce similarly modified carotenoids. The other bacteria in which these genes are found are not closely related to green sulfur bacteria or to one another. This suggests that the ability to synthesize modified carotenoids has been a frequently transferred trait. 相似文献
12.
We have shown that the green sulfur bacterium Chlorobium tepidum can be grown in batch culture supplemented with potentially toxic fatty alcohols without a major effect on the growth rate if the concentration of the alcohols is kept low either by programmed addition or by adding the alcohol as an inclusion complex with -cyclodextrin. HPLC and GC analysis of pigment extracts from the supplemented cells showed that the fatty alcohols were incorporated into bacteriochlorophyll c as the esterifying alcohol. It was possible to change up to 43% of the naturally occurring farnesyl ester of bacteriochlorophyll c with the added alcohol. This change in the homolog composition had no effect on the spectral properties of the cells when farnesol was partially replaced by stearol, phytol or geranylgeraniol. However, with dodecanol we obtained a blue-shift of 6 nm of the Qy band of the bacteriochlorophyll c and a concomitant change in the fluorescence emission was observed. The possible significance of these findings is discussed in the light of current ideas about bacteriochlorophyll organization in the chlorosomes.Abbreviations -CD
-cyclodextrin
- BChl
bacteriochlorophyll
- BChl c
H
bacteriochlorophyllide c
- [E,M] BChl c
F
8-ethyl, 12-methyl, farnesyl BChl c
- [E,E] BChl c
F
8-ethyl, 12-ethyl, farnesyl BChl c
- [P,E] BChl c
F
8-propyl, 12-ethyl, farnesyl BChl c
- [I,E] BChl c
F
8-isobutyl, 12-ethyl, farnesyl BChl c
- Car
carotenoids 相似文献
13.
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K. 相似文献
14.
Carles M. Borrego Paolo D. Gerola Mette Miller Raymond P. Cox 《Photosynthesis research》1999,59(2-3):159-166
We have investigated the changes in the pigment composition and organisation of the light-harvesting apparatus of the green sulfur bacterium Chlorobium tepidum growing under different light intensities. Cells grown at lower light intensities had lower exponential growth rates and increased amounts of the main light-harvesting pigments, bacteriochlorophyll c and carotenoids, on a cell protein basis. Absorption spectra of chlorosomes isolated from cells grown at low light intensities revealed a red-shift of up to 8 nm in the Qy band of bacteriochlorophyll c compared to chlorosomes from high light grown cells. A similar red-shift of up to 4 nm was also observed in the corresponding fluorescence emission peaks. HPLC analysis of pigment extracts showed a correlation between the red-shift and the content of the more alkylated BChl c homologs, which increased as light intensity for growth was lower. Furthermore, analysis of the carotenoid composition in chlorosomes re vealed a conspicuous change in the ratio between chlorobactene and 1, 2-dihydrochlorobactene, which dramatically decreased from 5 to 0.7 in light-limited cultures. 相似文献
15.
Green sulfur bacteria possess two light-harvesting antenna systems, the chlorosome and the Fenna-Matthews-Olson (FMO) protein. In addition to self-aggregated bacteriochlorophyll (BChl) c, chlorosomes of Chlorobium tepidum contain a small amount of BChl a (ratio 100:1). The chlorosomal BChl a is associated with CsmA, a 6.2 kDa protein that accounts for more than 50% of the protein content of chlorosomes. This CsmA-BChl a complex is located in the chlorosome baseplate with the hydrophilic C-terminal part of CsmA in contact with the FMO protein. CsmA was purified from Chl. tepidum. Isolated chlorosomes were lyophilized and extracted with chloroform/methanol (1:1, v/v). The extract was further purified using gel filtration and reverse-phase HPLC and the purity of the preparation confirmed by SDS-PAGE. Mass spectrometric analysis showed an m/z of 6154.8, in agreement with the calculated mass of the csmA gene product after C-terminal processing. CD spectroscopy of the isolated protein showed that the main structural motif was an alpha-helix. We have reconstituted the isolated CsmA protein with BChl a in micelles of n-octyl beta-d-glucopyranoside. The resulting preparation reproduced the spectral characteristics of the CsmA-BChl a complex present in the chlorosome baseplate. 相似文献
16.
Reaction center preparations from the green sulfur bacterium Chlorobium tepidum, which contain monoheme cytochrome c, were studied by flash-absorption spectroscopy in the near-UV, visible, and near-infrared regions. The decay kinetics of the photooxidized primary donor P840(+), together with the amount of photooxidized cytochrome c, were analyzed along a series of four flashes spaced by 1 ms: 95% of the P840(+) was reduced by cytochrome c with a t(1/2) of approximately 65 micros after the first flash, 80% with a t(1/2) of approximately 100 micros after the second flash, and 23% with a t(1/2) of approximately 100 micros after the third flash; after the fourth flash, almost no cytochrome c oxidation occurred. The observed rates, the establishment of redox equilibrium after each flash, and the total amount of photooxidizable cytochrome c are consistent with the presence of two equivalent cytochrome c molecules per photooxidizable P840. The data are well fitted assuming a standard free energy change DeltaG degrees of -53 meV for electron transfer from one cytochrome c to P840(+), DeltaG degrees being independent of the oxidation state of the other cytochrome c. These observations support a model with two monoheme cytochromes c which are symmetrically arranged around the reaction center core. From the ratio of menaquinone-7 to the bacteriochlorophyll pigment absorbing at 663 nm, it was estimated that our preparations contain 0.6-1.2 menaquinone-7 molecules per reaction center. However, no transient signal due to menaquinone could be observed between 360 and 450 nm in the time window from 10 ns to 4 micros. No recombination reaction between the primary partners P840(+) and A(0)(-) could be detected under normal conditions. Such a recombination was observed (t(1/2) approximately 19 ns) under highly reducing conditions or after accumulation of three electrons on the acceptor side during a series of flashes, showing that the secondary acceptors can stabilize three electrons. From our data, there is no evidence for involvement of menaquinone in charge separation in the reaction center of green sulfur bacteria. 相似文献
17.
The three-dimensional structure of CsmA: a small antenna protein from the green sulfur bacterium Chlorobium tepidum 总被引:1,自引:0,他引:1
The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein. 相似文献
18.
Ferredoxin-NAD(P)(+) reductase [EC 1.18.1.3, 1.18.1.2] was isolated from the green sulfur bacterium Chlorobium tepidum and purified to homogeneity. The molecular mass of the subunit is 42 kDa, as deduced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular mass of the native enzyme is approximately 90 kDa, estimated by gel-permeation chromatography, and is thus a homodimer. The enzyme contains one FAD per subunit and has absorption maxima at about 272, 385, and 466 nm. In the presence of ferredoxin (Fd) and reaction center (RC) complex from C. tepidum, it efficiently catalyzes photoreduction of both NADP(+) and NAD(+). When concentrations of NADP(+) exceeded 10 microM, NADP(+) photoreduction rates decreased with increased concentration. The inhibition by high concentrations of substrate was not observed with NAD(+). It also reduces 2,6-dichlorophenol-indophenol (DPIP) and molecular oxygen with either NADPH or NADH as efficient electron donors. It showed NADPH diaphorase activity about two times higher than NADH diaphorase activity in DPIP reduction assays at NAD(P)H concentrations less than 0.1 mM. At 0.5 mM NAD(P)H, the two activities were about the same, and at 1 mM, the former activity was slightly lower than the latter. 相似文献
19.
Kalliopi Kouyianou Michalis Aivaliotis Kris Gevaert Michael Karas Georgios Tsiotis 《Photosynthesis research》2010,104(2-3):153-162
Chlorobium tepidum is a Gram-negative bacterium of the green sulfur phylum (Chlorobia). Chlorobia are obligate anaerobic photolithoautotrophs that are widely distributed in aquatic environments where anoxic layers containing reduced sulfur compounds are exposed to light. The envelope of C. tepidum is a complex organelle composed of the outer membrane, the periplasm–peptidoglycan layer, and the cytoplasmic membrane. In addition to the outer and plasma membranes, C. tepidum contains chlorosomes attached to the cytoplasmic side of the plasma membrane. Each cellular compartment has a unique set of proteins, called sub-proteome. An important aim of proteome analysis is to study the level of the expressed genes and their response to environmental changes. Membrane protein studies are of primary importance to understand how nutrients are transported inside the cell, how toxic molecules are exported, and the mechanisms of photosynthesis and energy metabolism. 相似文献