首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanism of control of trophoblast invasion in situ.   总被引:21,自引:0,他引:21  
We have previously shown that first trimester human trophoblast cells share in vitro invasive properties with malignant cells. In this study we show that the in situ control of trophoblast invasion is provided by the uterine microenvironment. Trophoblast cells were labeled with 125I-deoxyuridine and examined for their ability to invade an epithelium-free human amniotic membrane in vitro under various conditions. The degree of invasion was determined as the percentage of the radioactivity retained within the membrane. Conditioned media from first trimester human decidual cells (DCM) suppressed invasion of trophoblast cells in the amnion invasion assay. This suppression was prevented by addition of neutralizing anti-TGF beta antibody or neutralizing antibody to tissue inhibitor of metalloproteinases (TIMP-1) to the DCM, and mimicked by TGF beta 1. These antibodies also augmented invasion beyond control levels, suggesting that trophoblast cells may also produce these factors. A bioassay for TGF beta activity, measured by antiproliferative effect on the mink lung epithelial cell line Mv 1 Lu, revealed that decidual cells produced this factor only in the latent form, whereas the active form was produced by the trophoblast. A decrease in collagenase type IV activity in the conditioned media of trophoblast cultures was observed when TGF beta 1 was added to these cultures. Removal of endogenous TGF beta in trophoblast cultures by addition of anti-TGF beta antibody resulted in down-regulation of TIMP message as determined by Northern analysis. These results indicate that a) decidua-derived (and to a minor extent trophoblast-derived) TGF beta is the prime mediator in the control of invasion by first trimester trophoblast, the latent form of TGF beta likely being activated by trophoblast-derived proteinases; b) induction of TIMP by TGF beta in both trophoblast and decidua is the final pathway in this control.  相似文献   

2.
3.
4.
5.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

6.
Adrenomedullin enhances invasion by trophoblast cell lines   总被引:3,自引:0,他引:3  
We have tested the hypothesis that adrenomedullin (ADM), a multifunctional peptide hormone, works as a trophoblast proinvasion factor. Our results showed that ADM receptor components-the mRNA and proteins of calcitonin receptor-like receptor (CALCRL) and receptor activity modifying proteins (RAMPs)-were expressed by human choriocarcinoma JAr cells and first-trimester cytotrophoblast HTR-8/SV neo cells. ADM stimulates both JAr and HTR-8/SV neo cell proliferation. The invasion capabilities of JAr cells and HTR-8/SV neo cells were also enhanced by ADM, and this was associated with increased gelatinolytic activity and reduced plasminogen activator inhibitor-1 mRNA expression (SERPINE1). Our data support the notion that ADM may be involved in the human implantation process via regulating trophoblast proliferation and differentiation.  相似文献   

7.
The successful transformation of uterine spiral arteries by invasion trophoblasts is critical for the formation of the human hemochorial placenta. Placental trophoblast migration and invasion are well regulated by various autocrine/paracrine factors at maternal–fetal interface. Human placental multipotent mesenchymal stromal cells (hPMSCs) are a subpopulation of villous mesenchymal cells and have been shown to produce a wide array of soluble cytokines and growth factors including HGF (hepatocyte growth factor). The function of hPMSCs in placental villous microenvironment has not been explored. The interaction between hPMSCs and trophoblasts was proposed in vitro in a recent article. HGF produced by hPMSCs was able to engage c-Met receptor on trophoblast and induced the trophoblast cAMP expression. The cAMP activated PKA, which in turn, signaled to Rap1 and led to integrin β1 activation. The total integrin β1 protein expression by trophoblasts was not affected by HGF stimulation. Hypoxia downregulated HGF expression by hPMSCs. HGF and PKA activator 6-Bnz-cAMP increased trophoblast adhesion and migration that were inhibited by PKA inhibitor H89 or Rap1 siRNA. Thus, hPMSCs-derived paracrine HGF can regulate trophoblast migration during placentation. These findings provided insight revealing at least one mechanism by which hPMSCs implicated in the development of preeclampsia.  相似文献   

8.
The tumor suppressor protein BARD1, originally discovered as BRCA1-binding protein, acts in conjunction with BRCA1 as ubiquitin ligase. BARD1 and BRCA1 form a stable heterodimer and dimerization, which is required for most tumor suppressor functions attributed to BRCA1. In addition, BARD1 has BRCA1-independent functions in apoptosis, and a role in control of tissue homeostasis was suggested. However, cancer-associated mutations of BARD1 are rare; on the contrary, overexpression of truncated BARD1 was found in breast and ovarian cancer and correlated with poor prognosis. Here we report that human cytotrophoblasts, which show a strong similarity with cancer cells in respect of their invasive behavior and capacity of matrix metalloprotease production, overexpress isoforms of BARD1 derived from differential splicing. We demonstrate that expression of BARD1 and its isoforms is temporally and spatially regulated by human chorionic gonadotropin and by hypoxia, both factors known to regulate the invasive phase and proliferation of cytotrophoblasts. Interestingly, we found a subset of BARD1 isoforms secreted by cytotrophoblasts. BARD1 repression by siRNAs, mitigates the interference of cytotrophoblasts with cell adhesion of collagen matrix-dependent epithelial cells, suggesting a role of BARD1 isoforms in extracellular matrix remodelling and in cytotrophoblasts invasion.  相似文献   

9.

Background  

The aim of this study was to examine the invasiveness of first trimester trophoblasts according to the secretion profile of MMP-2 and -9 at different gestational stages, and to test the similarity between primary trophoblast cell-culture and the JAR choriocarcinoma cell-line.  相似文献   

10.
11.
The effect of leptin on mouse trophoblast cell invasion   总被引:7,自引:0,他引:7  
The hormone leptin is produced by adipose tissue and can function as a signal of nutritional status to the reproductive system. The expression of leptin receptor and, in some species, leptin, in the placenta suggests a role for leptin in placental development, but this role has not been elucidated. Leptin is required at the time of embryo implantation in the leptin-deficient ob/ ob mouse and has been shown to upregulate expression of matrix metalloproteinases (MMPs), enzymes involved in trophoblast invasion, in cultured human trophoblast cells. This led us to the hypothesis that leptin promotes the invasiveness of trophoblast cells crucial to placental development. We found that leptin stimulated mouse trophoblast cell invasion through a matrigel-coated insert on Day 10, but not Day 18 of pregnancy. Optimal stimulation occurred at a concentration of 50 ng/ml leptin, similar to the peak plasma leptin concentration during pregnancy in the mouse. Leptin treatment did not stimulate proliferation of mouse trophoblast cells in primary culture. Leptin stimulation of invasion was prevented by 25 muM GM6001, an inhibitor of MMP activity. Our results suggest that leptin may play a role in the establishment of the placenta during early pregnancy and that this function is dependent on MMP activity. This effect of leptin may represent one mechanism by which body condition affects placental development.  相似文献   

12.
The invasion of extravillous trophoblast cells into the maternal endometrium is one of the key events in human placentation. The ability of these cells to infiltrate the uterine wall and to anchor the placenta to it as well as their ability to infiltrate and to adjust utero-placental vessels to pregnancy depends, among other things, on their ability to secrete enzymes that degrade the extracellular matrix. Most of the latter enzymes belong to the family of matrix metalloproteinases. Their activity is regulated by the tissue inhibitors of matrix metalloproteinases. We have studied the distribution patterns of matrix metalloproteinases-1, -2, -3, and -9 and their inhibitors TIMP-1 and TIMP-2 as compared to the distribution of their substrates along the invasive pathway of extravillous trophoblast of 1st, 2nd, and 3rd trimester placentas by means of light microscopy on paraffin and cryostat sections as well as at the ultrastructural level (only 3rd trimester placenta). The comparison of different methods proved to be necessary, since the immunohistochemical distribution patterns of these soluble enzymes are considerably influenced by the pretreatment of tissues. All three methods revealed immunoreactivities of both, proteinases and their inhibitors, not only intracellularly in the extravillous trophoblast but also extracellularly in its surrounding matrix, the distribution patterns depending on the stage of pregnancy and on the degree of differentiation of trophoblast cells along their invasive pathway. Within the extracellular matrix, immunolocalization of matrix metalloproteinases as well as their inhibitors showed a specific relation to certain extracellular matrix molecules.  相似文献   

13.
The insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) is a member of a highly conserved protein family that is expressed specifically in placenta, testis and various cancers, but is hardly detectable in normal adult tissues. IGF2BP3 has important roles in RNA stabilization and translation, especially during early stages of both human and mouse embryogenesis. Placenta is an indispensable organ in mammalian reproduction that connects developing fetus to the uterine wall, and is responsible for nutrient uptake, waste elimination and gas exchange. Fetus development in the maternal uterine cavity depends on the specialized functional trophoblast. Whether IGF2BP3 plays a role in trophoblast differentiation during placental development has never been examined. The data obtained in this study revealed that IGF2BP3 was highly expressed in human placental villi during early pregnancy, especially in cytotrophoblast cells (CTBs) and trophoblast column, but a much lower level of IGF2BP3 was detected in the third trimester placental villi. Furthermore, the expression level of IGF2BP3 in pre-eclamptic (PE) placentas was significantly lower than the gestational age-matched normal placentas. The role of IGF2BP3 in human trophoblast differentiation was shown by in vitro cell invasion and migration assays and an ex vivo explant culture model. Our data support a role of IGF2BP3 in promoting trophoblast invasion and suggest that abnormal expression of IGF2BP3 might be associated with the etiology of PE.  相似文献   

14.
Placental trophoblasts (TBs) invade and remodel uterine vessels with an arterial bias. This process, which involves vascular mimicry, re-routes maternal blood to the placenta, but fails in pre-eclampsia. We investigated Notch family members in both contexts, as they play important roles in arterial differentiation/function. Immunoanalyses of tissue sections showed step-wise modulation of Notch receptors/ligands during human TB invasion. Inhibition of Notch signaling reduced invasion of cultured human TBs and expression of the arterial marker EFNB2. In mouse placentas, Notch activity was highest in endovascular TBs. Conditional deletion of Notch2, the only receptor upregulated during mouse TB invasion, reduced arterial invasion, the size of maternal blood canals by 30-40% and placental perfusion by 23%. By E11.5, there was litter-wide lethality in proportion to the number of mutant offspring. In pre-eclampsia, expression of the Notch ligand JAG1 was absent in perivascular and endovascular TBs. We conclude that Notch signaling is crucial for TB vascular invasion.  相似文献   

15.
16.
17.

Background

Interactions of glycoconjugates with endogenous galectins, have been long proposed to participate in several reproductive processes including implantation. In human placenta gal-1, gal-3, gal-8, and gal-13 proteins are known to be present. Each of them has been proposed to play multiple functions, but so far no clear picture has emerged. We hypothesized that gal-1 participates in trophoblast invasion, and conducted Matrigel invasion assay using isolated cytotrophoblast from first trimester placenta and HTR-8/SVneo cell line to test it.

Methods and Findings

Function blocking anti-gal-1 antibody was employed to assess participation of endogenous gal-1 in cell adhesion, cell invasion of HTR-8/SVneo cells. When gal-1 was blocked in isolated trophoblast cell invasion was reduced to 75% of control (SEM±6.3, P<0.001) and to 66% of control (SEM±1.7, P<0.001) in HTR-8/SVneo cell line. Increased availability of gal-1, as two molecular forms of recombinant human gal-1 (CS-gal-1 and Ox-gal-1), resulted in increased cell invasion by cytotrophoblast to 151% (SEM±16, P<0.01) with 1 ng/ml of CS-gal-1, and to 192% (SEM±51, P<0.05) with 1 µg/ml of Ox-gal-1. Stimulation was also observed in HTR-8/SVneo cells, to 317% (SEM±58, P<0.001) by CS-gal-1, and to 200% (SEM±24, P<0.001) by Ox-gal-1 at 1 µg/ml. Both sets of results confirmed involvement of gal-1 in trophoblast invasion. Galectin profile of isolated cytotrophoblast and HTR-8/SVneo cells was established using RT-PCR and real-time PCR and found to consist of gal-1, gal-3 and gal-8 for both cell types. Only gal-1 was located at the trophoblast cell membrane, as determined by FACS analysis, which is consistent with the results of the functional tests.

Conclusion and Significance

These findings qualify gal-1 as a member of human trophoblast cell invasion machinery.  相似文献   

18.
Role of matrix metalloproteinases in melanoma cell invasion   总被引:11,自引:0,他引:11  
Cutaneous melanomas are notorious for their tendency to metastasize. Essential steps in this process are the degradation of basement membranes and remodeling of the extracellular matrix (ECM) by proteolytic enzymes such as matrix metalloproteinases (MMPs), which are regulated by their tissue inhibitors (TIMPs). An MMP expression is not restricted to tumor cells but is also found in stromal cells, indicating that stroma-derived proteases may contribute to melanoma progression. The MMPs have been shown to interact with a broad range of non-matrix proteins including adhesion molecules, growth factors and mediators of angiogenesis and apoptosis. In this review, we evaluate new insights into the interplay of MMPs and their molecular partners in melanoma progression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号