首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

2.
We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.  相似文献   

3.
Active processes of permafrost thaw in Western Siberia increase the number of soil subsidencies, thermokarst lakes and thaw ponds. In continuous permafrost zones, this process promotes soil carbon mobilisation to water reservoirs, as well as organic matter (OM) biodegradation, which produces a permanent flux of carbon dioxide (CO2) to the atmosphere. At the same time, the biogeochemical evolution of aquatic ecosystems situated in the transition zone between continuous permafrost and permafrost-free terrain remains poorly known. In order to better understand the biogeochemical processes that occur in thaw ponds and lakes located in discontinuous permafrost zones, we studied ~30 small (1–100,000 m2) shallow (<1 m depth) lakes and ponds formed as a result of permafrost subsidence and thaw of the palsa bog located in the transition zone between the tundra and forest-tundra (central part of Western Siberia). There is a significant increase in dissolved CO2 and methane (CH4) concentration with decreasing water body surface area, with the largest supersaturation with respect to atmospheric CO2 and CH4 in small (<100 m2) permafrost depressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, and metal concentrations also progressively increase from large lakes to thaw ponds and depressions. As such, small water bodies with surface areas of 1–100 m2 that are not accounted for in the existing lake and pond databases may significantly contribute to CO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved trace elements and organic carbon. In situ lake water incubation experiments yielded negligible primary productivity but significant oxygen consumption linked to the mineralisation rate of dissolved OM by heterotrophic bacterioplankton, which produce a net CO2 flux to the atmosphere of 5 ± 2.5 mol C m2 year?1. The most significant result of this study, which has long-term consequences on our prediction of aquatic ecosystem development in the course of permafrost degradation is CO2, CH4, and DOC concentrations increase with decreasing lake age and size. As a consequence, upon future permafrost thaw, the increase in the number of small water bodies, accompanied by the drainage of large thermokarst lakes to the hydrological network, will likely favour (i) the increase of DOC and colloidal metal stocks in surface aquatic systems, and (ii) the enhancement of CO2 and CH4 fluxes from the water surface to the atmosphere. According to a conservative estimation that considers that the total area occupied by water bodies in Western Siberia will not change, this increase in stocks and fluxes could be as high as a factor of ten.  相似文献   

4.
5.
Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large‐scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape‐level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer‐term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased ground saturation that will accompany permafrost thaw.  相似文献   

6.
Climatic change may influence decomposition dynamics in arctic and boreal ecosystems, affecting both atmospheric CO2 levels, and the flux of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) to aquatic systems. In this study, we investigated landscape‐scale controls on potential production of these compounds using a one‐year laboratory incubation at two temperatures (10° and 30 °C). We measured the release of CO2, DOC and DON from tundra soils collected from a variety of vegetation types and climatic regimes: tussock tundra at four sites along a latitudinal gradient from the interior to the north slope of Alaska, and soils from additional vegetation types at two of those sites (upland spruce at Fairbanks, and wet sedge and shrub tundra at Toolik Lake in northern Alaska). Vegetation type strongly influenced carbon fluxes. The highest CO2 and DOC release at the high incubation temperature occurred in the soils of shrub tundra communities. Tussock tundra soils exhibited the next highest DOC fluxes followed by spruce and wet sedge tundra soils, respectively. Of the fluxes, CO2 showed the greatest sensitivity to incubation temperatures and vegetation type, followed by DOC. DON fluxes were less variable. Total CO2 and total DOC release were positively correlated, with DOC fluxes approximately 10% of total CO2 fluxes. The ratio of CO2 production to DOC release varied significantly across vegetation types with Tussock soils producing an average of four times as much CO2 per unit DOC released compared to Spruce soils from the Fairbanks site. Sites in this study released 80–370 mg CO2‐C g soil C?1 and 5–46 mg DOC g soil C?1 at high temperatures. The magnitude of these fluxes indicates that arctic carbon pools contain a large proportion of labile carbon that could be easily decomposed given optimal conditions. The size of this labile pool ranged between 9 and 41% of soil carbon on a g soil C basis, with most variation related to vegetation type rather than climate.  相似文献   

7.
1. Global warming is predicted to cause changes in permafrost cover and stability in the Arctic. Zones of high ion concentration in regions of ice‐rich permafrost are a reservoir of chemicals that can potentially be transferred to fresh waters during thawing. Consequently, input of enriched runoff from the thaw and sediment and vegetation from the landscape could alter lakes by affecting their geochemistry and biological production. 2. Three undisturbed lakes and five lakes disturbed by retrogressive permafrost thaw slumps were sampled during late summer of 2006 to assess the potential effects of thermokarst shoreline slumping on water and sediment chemistry, the underwater light regime, and benthic macrophyte biomass and community structure. 3. Undisturbed lakes had sediments rich in organic material and selected micronutrients, while disturbed lakes had sediments richer in calcium, magnesium and strontium, greater transparency of the water column, and a well‐developed submerged macrophyte community. 4. It is postulated that enriched runoff chemistry may alter nutrient availability at the sediment–water interface and also the degradation of organic material, thus affecting lake transparency and submerged macrophytes. The results suggest that retrogressive permafrost slumping can significantly affect food webs in arctic tundra lakes through an increase in macrophyte biomass and development of a more complex benthic habitat.  相似文献   

8.
Organic carbon (C) in lakes originates from two distinct sources—primary production from within the lake itself (autochthonous supply) and importation of organic matter from the terrestrial watershed (allochthonous supply). By manipulating the 13C of dissolved inorganic C, thereby labeling within-lake primary production, we examined the relative importance of autochthonous and allochthonous C in supporting bacterial production. For 35 days, NaH13CO3 was added daily to two small, forested lakes. One of the lakes (Peter) was fertilized so that primary production exceeded total respiration in the epilimnion. The other lake (Tuesday), in contrast, was low in productivity and had high levels of colored dissolved organic C (DOC). To obtain bacterial C isotopes, bacteria were regrown in situ in particle-free lake water in dialysis tubes. The contribution of allochthonous C to bacterial biomass was calculated by applying a two-member mixing model. In the absence of a direct measurement, the isotopic signature of the autochthonous end-member was estimated indirectly by three different approaches. Although there was excess primary production in Peter Lake, bacterial biomass consisted of 43–46% allochthonous C. In Tuesday Lake more than 75% of bacterial growth was supported by allochthonous C. Although bacteria used autochthonous C preferentially over allochthonous C, DOC from the watershed contributed significantly to bacterial production. In combination with results from similar experiments in different lakes, our findings suggest that the contribution of allochthonous C to bacterial production can be predicted from ratios of chromophoric dissolved organic matter (a surrogate for allochthonous supply) and chlorophyll a (a surrogate for autochthonous supply).  相似文献   

9.
We quantified sedimentation of organic carbon in 12 Swedish small boreal lakes (<0.48 km2), which ranged in dissolved organic carbon (DOC) from 4.4 to 21.4 mg C l−1. Stable isotope analysis suggests that most of the settling organic matter is of allochthonous origin. Annual sedimentation of allochthonous matter per m2 lake area was correlated to DOC concentration in the water (R 2 = 0.41), and the relationship was improved when sedimentation data were normalized to water depth (R 2 = 0.58). The net efflux of C as CO2 from the water to the atmosphere was likewise correlated to DOC concentration (R 2 = 0.52). The losses of organic carbon from the water column via mineralization to CO2 and via sedimentation were approximately of equal importance throughout the year. Our results imply that DOC is a precursor of the settling matter, resulting in an important pathway in the carbon cycle of boreal lakes. Thus, flocculation of DOC of terrestrial origin and subsequent sedimentation could lead to carbon sequestration by burial in lake sediments.  相似文献   

10.
SUMMARY 1. Macrophyte abundance and distribution was assessed in a chain of six interconnected lakes (all with the same flooding frequency) in the Arctic, where increasing distance from the Mackenzie River channel resulted in a gradient of water transparency (‘chain‐set’ lakes), and in a group of 26 spatially discrete lakes where increasing frequency and duration of lake flooding with river water (controlled by sill height) also resulted in a transparency gradient (‘sill‐set’ lakes). 2. Among the chain‐set lakes, above‐ground macrophyte biomass increased from 0 to 1000 g m?2 with increasing water transparency. Among the sill‐set lakes, the transparency gradient among the lakes was less well defined and the relations with biomass were more varied. A decrease in flooding was associated with increasing water transparency and an increasing biomass of macrophytes from about 0 to over 2000 g m?2. For a specific flood frequency, however, the effect of flooding was much greater when lakes were directly connected to a river channel than when floodwaters flowed first through an intervening lake. Among infrequently flooded lakes the effect of flooding on water transparency and biomass was negligible. 3. Among relatively clear lakes in both sets of lakes, biomass increased with increasing water transparency and decreasing lake depth. Among relatively turbid lakes, however, biomass increased with the combined effect of increasing water colour (decreasing water transparency) and increasing lake water depth. The increases in biomass with increasing water colour (coloured dissolved organic matter) and increasing depth, which together result in reduced light at the bed, may be explained by reduced exposure to ultra violet light. 4. An average light attenuation of 1.3 m?1 (Secchi depth about 1 m) over the growing season appears to represent a threshold water transparency which, in combination with water depths early in the growing season, is consistent with a light supply on the bed required for growth of the common macrophytes in lakes of the Mackenzie Delta. However, a comparison with other systems indicates that macrophytes among lakes of the Mackenzie Delta grow deeper, for a given level of transparency, than is reported in lakes at lower latitude, despite the lower sun angles and increased reflectivity of water surfaces in the arctic. 5. A complete accounting of water transparency (at PAR and UV wavelengths), lake depth, summer sun angle and duration of sunlight may be necessary to explain patterns of macrophyte growth among lakes across a full range of latitudes.  相似文献   

11.
Role of lakes for organic carbon cycling in the boreal zone   总被引:6,自引:0,他引:6  
We calculated the carbon loss (mineralization plus sedimentation) and net CO2 escape to the atmosphere for 79 536 lakes and total running water in 21 major Scandinavian catchments (size range 437–48 263 km2). Between 30% and 80% of the total organic carbon that entered the freshwater ecosystems was lost in lakes. Mineralization in lakes and subsequent CO2 emission to the atmosphere was by far the most important carbon loss process. The withdrawal capacity of lakes on the catchment scale was closely correlated to the mean residence time of surface water in the catchment, and to some extent to the annual mean temperature represented by latitude. This result implies that variation of the hydrology can be a more important determinant of CO2 emission from lakes than temperature fluctuations. Mineralization of terrestrially derived organic carbon in lakes is an important regulator of organic carbon export to the sea and may affect the net exchange of CO2 between the atmosphere and the boreal landscape.  相似文献   

12.
1. We studied the spatial and temporal patterns of change in a suite of twenty‐one chemical and biological variables in a lake district in arctic Alaska, U.S.A. The study included fourteen stream sites and ten lake sites, nine of which were in a direct series of surface drainage. All twenty‐four sites were sampled between one and five times a year from 1991 to 1997. 2. Stream sites tended to have higher values of major anions and cations than the lake sites, while the lake sites had higher values of particulate carbon, nitrogen, phosphorous and chlorophyll a. There were consistent and statistically significant differences in concentrations of variables measured at the inlet versus the outlet of lakes, and in variables measured at upstream versus downstream sites in the stream reaches which connect the lakes. In‐lake processing tended to consume alkalinity, conductivity, H+, DIC, Ca2+, Mg2+, CO2, CH4, and NO3, and produce K+ and dissolved organic carbon (DOC). In‐stream processing resulted in the opposite trends (e.g. consumption of K+ and DOC), and the magnitudes of change were often similar to those measured in the lakes but with the opposite sign. 3. Observed spatial patterns in the study lakes included mean concentrations of variables which increased, decreased or were constant along the lake chain from high to low altitude in the catchment (stream sites showed no spatial patterns with any variables). The strongest spatial patterns were of increasing conductivity, Ca2+, Mg2+, alkalinity, dissolved inorganic carbon and pH with lake chain number (high to low altitude in the basin). These patterns were partly determined by the effect of increasing catchment area feeding into lakes further downslope, and partly by the systematic processing of materials in lakes and in the stream segments between lakes. 4. Synchrony (the temporal coherence or correlation of response) of variables across all lakes ranged from 0.18 for particulate phosphorus to 0.90 for Mg2+ the average synchrony for all twenty‐one variables was 0.50. The synchronous behaviour of lake pairs was primarily related to the spatial location or proximity of the lakes for all variables taken together and for many individual variables, and secondarily, to the catchment to lake area ratio and the water residence time. 5. These results illustrate that, over small geographic areas, and somewhat independent of lake or stream morphometry, the consistent and directional (downslope) processing of materials helps produce spatial patterns which are coherent over time for many limnological variables. We combine concepts from stream, lake and landscape ecology, and develop a conceptual view of landscape mass balance. This view highlights that the integration of material processing in both lakes and rivers is critical for understanding the structure and function of surface waters, especially from a landscape perspective.  相似文献   

13.
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.  相似文献   

14.
Nineteen small lakes located in open landscapes or deciduous forests in nutrient-rich calcareous moraines in North Zealand, Denmark, were all net heterotrophic having negative net ecosystem production and predominant CO2 supersaturation and O2 undersaturation of lake waters. Forest lakes were poorer in nutrients, phytoplankton, and primary production, but richer in dissolved organic matter and CO2 than open lakes with more light available. The modeled annual balance between gross primary production and community respiration (GPP/R COM) averaged 0.60 in forest lakes and 0.76 in open lakes and the ratio increased significantly with phosphorus concentration and phytoplankton biomass but decreased with colored dissolved organic matter. The negative daily rates of ecosystem production resembled estimates of oxygen uptake from the atmosphere to the lakes, whereas estimates of CO2 emission were 7.2-fold higher. Although CO2-rich groundwater and anaerobic respiration support greater molar release of CO2 than uptake of O2, we suggest CO2 emission is overestimated. Possible explanations include CO2 enrichment of the air film above small wind-sheltered lakes. The observed metabolism and gas exchange show that exogenous organic matter is an important supplementary energy source to community respiration in these small lakes and that forest lakes, in addition, experience pronounced light attenuation from trees and dissolved colored organic matter constraining primary production. Kaj Sand-Jensen (KSJ) formulated the original research idea and designed the study. Data analysis (ie. calculations, statistics and figures) was performed by Peter A. Staehr (PAS). The text was for the most part written by KSJ, although with contributions by PAS, especially in describing the applied methods and data analysis.  相似文献   

15.
The submersed macrophyte Vallisneria americana was grown for seven weeks in a greenhouse to test for differences in the ability of three different sediments to support growth stimulation in response to CO2 enrichment at low pH. Plants accumulated 21- to 24-fold greater biomass at 10 × ambient CO2 concentrations than at ambient CO2 on all sediments. At both CO2 levels, plants grown on sediment from an acidified lake accumulated ca. 81%, and those grown on oligotrophic lake sediment ca. 47% as much biomass as plants grown on alkaline lake sediment. Despite striking CO2 and sediment effects on biomass accumulation, there was no significant interaction (using log-transformed data) between CO2 and sediment effects, indicating that all sediments allowed similar proportionate growth responses to CO2 enrichment. Plants grown on the less fertile sediments showed greater relative allocation to horizontal versus vertical growth by producing more rosette-bearing stolons in relation to plant height (leaf length) than plants grown on relatively fertile, alkaline lake sediment. Tissue analysis suggested that sediment effects on Vallisneria growth could be attributed neither to mineral putrient (nitrogen and phosphorus) limitation nor to aluminum toxicity in these low pH treatments. In any case, CO2 availability can be an important regulator of submersed macrophyte growth at low pH on a variety of sediment types, including those from oligotrophic and acidic lakes.  相似文献   

16.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.  相似文献   

17.
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.  相似文献   

18.
19.
Lakes can be sources or sinks of carbon, depending on local conditions. Recent studies have shown that the CO2 efflux increases when lakes recover from eutrophication, mainly as a result of a reduction in phytoplankton biomass, leading to less uptake of CO2 by producers. We hypothesised that lake restoration by removal of coarse fish (biomanipulation) or invasion of mussels would have a similar effect. We studied 14–22 year time series of five temperate Danish lakes and found profound effects on the calculated CO2 efflux of major shifts in ecosystem structure. In two lakes, where limited colonisation of submerged macrophytes occurred after biomanipulation or invasion of zebra mussels (Dreissena polymorpha), the efflux increased significantly with decreasing phytoplankton chlorophyll a. In three lakes with major interannual variation in macrophyte abundance, the efflux declined with increasing macrophyte abundance in two of the lakes, while no relation to macrophytes or chlorophyll a was found in the third lake, likely due to high groundwater input to this lake. We conclude that clearing water through invasive mussels or lake restoration by biomanipulation may increase the CO2 efflux from lakes. However, if submerged macrophytes establish and form dense beds, the CO2 efflux may decline again.  相似文献   

20.
We show that sediment respiration is one of the key factors contributing to the high CO2 supersaturation in and evasion from Finnish lakes, and evidently also over large areas in the boreal landscape, where the majority of the lakes are small and shallow. A subpopulation of 177 randomly selected lakes (<100 km2) and 32 lakes with the highest total phosphorus (Ptot) concentrations in the Nordic Lake Survey (NLS) data base were sampled during four seasons and at four depths. Patterns of CO2 concentrations plotted against depth and time demonstrate strong CO2 accumulation in hypolimnetic waters during the stratification periods. The relationship between O2 departure from the saturation and CO2 departure from the saturation was strong in the entire data set (r2=0.79, n=2 740, P<0.0001). CO2 concentrations were positively associated with lake trophic state and the proportion of agricultural land in the catchment. In contrast, CO2 concentrations negatively correlated with the peatland percentage indicating that either input of easily degraded organic matter and/or nutrient load from agricultural land enhance degradation. The average lake‐area‐weighted annual CO2 evasion based on our 177 randomly selected lakes and all Finnish lakes >100 km2 ( Rantakari & Kortelainen, 2005 ) was 42 g C m?2 LA (lake area), approximately 20% of the average annual C accumulation in Finnish forest soils and tree biomass (covering 51% of the total area of Finland) in the 1990s. Extrapolating our estimate from Finland to all lakes of the boreal region suggests a total annual CO2 evasion of about 50 TgC, a value upto 40% of current estimates for lakes of the entire globe, emphasizing the role of small boreal lakes as conduits for transferring terrestrially fixed C into the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号