首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delivering tissue regeneration.   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
The plasmin and plasminogen activator proteases of the plasma fibrinolytic system were investigated as potential blood-borne mediators of the proliferative activation of hepatocytes by partial hepatectomy. Partial (68%) liver resection, as well as proliferatively activating the remaining hepatocytes, rapidly (by 30 minutes) doubled the level (or activity) of circulating plasminogen activator but later (2 hours) greatly depressed this level. This later depression of the activity of circulating plasminogen activator lasted for eight to ten hours before returning to the normal level two to four hours before the hepatocytes in the liver remnant began to synthesize DNA. This sequence of changes in the fibrinolytic potential was not abolished by prior thyroparathyroidectomy which is known to inhibit the initiation of hepatocyte DNA synthesis and to prevent the secretion of the calcium homeostatic hormones, another early systemic consequence of partial liver resection. Since the early rise in plasminogen activator activity did not cause the appearance of active (free) circulating plasmin, and since the injection of large doses of the fibrinolytic and protease inhibitors, EACA and Trasylol®, during this early, post-operative period of hyperfibrinolytic potential did not prevent hepatocytes from initiating DNA synthesis, it is unlikely that either plasmin or its activator protease are blood-borne initiators of hepatocyte proliferative development.  相似文献   

5.
Growth factors with already established multiple effects on non-neural cells continue to be of considerable interest to researchers with regard to the nervous system, where regulation of cell maintenance and plasticity in relation to lesion and regeneration is part of their functional repertoire. Fibroblast growth factors, interleukins, and type beta transforming growth factors are prominent representatives of such proteins. Ciliary neurotrophic factor is another multifunctional neurokine. The proposed role of this molecule as a 'lesion factor', however, is still not firmly settled.  相似文献   

6.
Macrophages and nerve regeneration.   总被引:1,自引:0,他引:1  
Macrophages are not only phagocytic cells but also secrete a plethora of growth factors that are potentially important for regeneration. This review will examine the emerging evidence of a likely contribution by macrophages to axonal regeneration.  相似文献   

7.
Nerve growth factor, fibroblast growth factor, and ciliary neurotrophic factor can protect selected populations of neurons from some of the degenerative changes that otherwise follow axonal injury or other insults. The function of diffusible neurotrophic factors in axonal regeneration is still unclear, however. Knowledge of the nerve growth factor congeners, brain-derived neurotrophic factor and neurotrophin-3, is advancing rapidly as is the identification of neurotrophin receptors, several of which are membrane-bound tyrosine kinases.  相似文献   

8.
The pattern of histone phosphorylation at acid-stable, alkali-labile sites has been examined throughout the early stages of liver regeneration, namely at times of “gene activation”. Among the histones, only H1 shows an increase in phosphorylation. This increase initiates near the end of the period of chromatin template activation. Thus, there is no obvious temporal correlation between increased histone phosphorylation and increased RNA synthesis. The relative levels of phosphorylation of the various histones and the change in H1 phosphorylation observed in the liver system closely parallel the patterns exhibited by cultured animal cells during the G1 and S phases of the cycle as described by other investigators.  相似文献   

9.
10.
11.
Current research into regeneration of the nervous system has focused on defining the molecular events that occur during regeneration. One well-characterized system for studying nerve regeneration is the sciatic nerve of rat. Numerous studies have characterized the sequence of events that occur after a crush injury to the sciatic nerve (Cajal 1928; Hall 1989). These events include axon and myelin breakdown, changes in the permeability of the blood vessels, proliferation of Schwann cells, invasion of macrophages, and the phagocytosis of myelin fragments by Schwann cells and macrophages. The distal segment of the injured sciatic nerve provides a supportive environment for the regeneration of the nerve fibres (Cajal 1928; David & Aguayo 1981). Within a period of weeks, the injured sciatic nerve is able to regrow and successfully reinnervate the appropriate targets. Some of the molecules that provide trophic support for the regrowing nerve fibres have been identified, including nerve growth factor (NGF) (Heumann et al. 1987) and glial maturation factor beta (Bosch et al. 1989). Another class of molecules show changes in their rates of synthesis during regeneration, including both proteins (Skene & Shooter 1983; Muller et al. 1986) and mRNA species (Trapp et al. 1988; Meier et al. 1989). To better understand nerve regeneration, we have taken two, parallel molecular approaches to study the events associated with regeneration. The first of these is to study in detail the mechanism of action of a molecule that has been implicated in the regeneration process, nerve growth factor. The second approach is to identify novel gene sequences which are regulated during regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
15.
Postmetamorphic froglets of Xenopus laevis regenerate hypomorphic unbranched spikes from amputated arm stumps. These are composed primarily of cartilage, produced from blastemalike structures sparsely populated with cells and rich in connective tissue. Some consider these outgrowths to be an example of epimorphic regeneration produced from blastemas, albeit deficient ones. Others interpret them as a case of tissue regeneration derived from fibroblastemas augmented by chondrocytes and periosteal and perichondrial fibroblasts. To resolve these alternatives, forelimbs were amputated proximal to the wrist, skinned, and inserted through the body wall into the abdominal cavity. In the absence of skin, epidermal wound healing failed to occur and blastemas could not develop. After 2 months, by which time controls had regenerated spikes averaging 3.38 mm long, the denuded stumps had not given rise to outgrowths. They typically developed cartilaginous caps on the severed ends of the radius-ulna, and in rare cases formed amorphous growths of cartilage. If blastema formation is considered diagnostic of epimorphic regeneration and tissue regeneration can proceed in the absence of epidermal wound healing and blastema formation, these findings lead to the conclusion that Xenopus limb regeneration is epimorphic.  相似文献   

16.
17.
18.
Reduced nicotinamide adenine dinucleotide (NADH) has been characterized electrochemically by solid electrode voltammetry and controlled potential electrolysis. Photometric and enzymatic assay showed that enzymatically active nicotinamide adenine dinucleotide (NAD-+) could be regenerated electrolytically from its reduced form without the use of so-called electron mediators. Complete regeneration of enzymatically active NAD can be expected in pyrophosphate buffers and phosphate buffers during the electrolysis. Advantages of electrochemical regeneration of coenzymes are discussed, especially with regard to immobilization of enzymes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号