首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphorylation is responsible for the shift in electrophoretic mobility of polyomavirus large T antigen observed in pulse-chase or continuous-labeling experiments. Phosphorylated forms migrated more slowly than newly synthesized [35S]methionine large T antigen, and alkaline phosphatase treatment reversed the mobility shift. Analysis of phosphopeptides with Staphylococcus aureus V8 protease showed that large T antigen forms of intermediate mobility were enriched in peptides 1 to 4, 8, and 9, while the slower migrating species had all nine phosphopeptides, including peptides 5 and 7. The phosphorylations represented by phosphopeptides 5 and 7 were of particular interest. These phosphopeptides were entirely lacking in large T antigen from tsa mutants such as ts616 labeled at the nonpermissive temperature. Also, the phosphorylation of peptides 5 and 7 depends on the growth state of the cell. Early in infection of quiescent cells intermediate mobility forms of large T antigen with little or no phosphorylation, particularly of peptides 5 and 7, were seen, whereas peptides 5 and 7 were well represented at the same time in patterns from growing cells. Later in infection of growth-arrested cells, these phosphorylations were observed, suggesting that infection stimulates the relevant kinase. Because large T antigen of hrt mutants, which lack middle and small T antigens, showed phosphorylation of peptides 5 and 7, large T antigen was apparently responsible for the stimulation. Because some differences in the distribution of phosphopeptides were noted between hrt mutants and the wild type, middle T antigen, small T antigen, or both may play a modulating role in large T antigen phosphorylation.  相似文献   

3.
Polyomavirus large T antigen has an N-terminal domain of approximately 260 amino acids which can immortalize primary cells but lacks sequences known to be required for DNA binding and replication. Treatment of full-length large T with either V8 protease or chymotrypsin yields an N-terminal fragment of 36 to 40 kDa and a C-terminal fragment of approximately 60 kDa. This finding suggests a division of the protein into two domains. Proteolysis experiments show that the N-terminal domain does not have strong physical association with the rest of the protein. It also does not self-associate. A construct expressing only the N-terminal 259 amino acids is sufficient for immortalization. The independently expressed N-terminal domain is multiply phosphorylated, although at a lower level than the same region in full-length large T. The 259-residue protein binds to both pRb and p107 with somewhat lower efficiency than the full-length protein.  相似文献   

4.
To map the DNA-binding domain of polyomavirus large T antigen, we constructed a set of plasmids coding for unidirectional carboxy- or amino-terminal deletion mutations in the large T antigen. Analysis of origin-specific DNA binding by mutant proteins expressed in Cos-1 cells revealed that the C-terminal boundary of the DNA-binding domain is at or near Glu-398. Fusion proteins of large T antigen lacking the first 200 N-terminal amino acids bound specifically to polyomavirus origin DNA; however, deletions beyond this site resulted in unstable proteins which could not be tested for DNA binding. Testing of point mutants and internal deletions by others suggested that the N-terminal boundary of the DNA-binding domain lies between amino acids 282 and 286. Taken together, these results locate the DNA-binding domain of polyomavirus large T antigen to the 116-amino-acid region between residues 282 and 398.  相似文献   

5.
Inactivation of the retinoblastoma tumor suppressor protein (pRB) contributes to tumorigenesis in a wide variety of cancers. In contrast, the role of the two pRB-related proteins, p130 and p107, in oncogenic transformation is unclear. The LXCXE domain of simian virus 40 large T antigen (TAg) specifically binds to pRB, p107, and p130. We have previously shown that the N terminus and the LXCXE domain of TAg cooperate to alter the phosphorylation state of p130 and p107. Here, we demonstrate that TAg promotes the degradation of p130 and that the N terminus of TAg is required for this activity. The N terminus of TAg has homology to the J domain of the DnaJ family of molecular chaperone proteins. Mutants with mutations in the J-domain homology region of TAg are defective for altering p130 and p107 phosphorylation and for p130 degradation. A heterologous J-domain from a human DnaJ protein can functionally substitute for the N terminus of TAg in the effect on p107 and p130 phosphorylation and p130 stability. We further demonstrate that the J-domain homology region of TAg confers a growth advantage to wild-type mouse embryo fibroblasts (MEFs) but is dispensable in the case of MEFs lacking both p130 and p107. This indicates that p107 and p130 have overlapping growth-suppressing activities whose inactivation is mediated by the J domain of TAg.  相似文献   

6.
We isolated revertants of a polyomavirus whose origin of DNA replication contains a point mutation in the palindrome to which large T antigen binds. Four independent second-site revertants contain an Asp-286----Asn-286 substitution in large T antigen. This mutant large T antigen activates replication of DNAs containing the mutant polyomavirus origin as well as replication of DNAs containing the wild-type origin; however, replication of DNAs with enhancer mutations is not activated by this large T antigen. The Asn-286 mutation occurs in a positively charge region of large T antigen near the location of several mutations which inactivate DNA replication. We suggest that this region of large T antigen is responsible for recognition of specific DNA sequences at the origin and that ionic forces are important for this interaction.  相似文献   

7.
Mapping of phosphorylation sites in polyomavirus large T antigen.   总被引:10,自引:8,他引:2       下载免费PDF全文
The phosphorylation sites of polyomavirus large T antigen from infected or transformed cells were investigated. Tryptic digestion of large T antigen from infected, 32Pi-labeled cells revealed seven major phosphopeptides. Five of these were phosphorylated only at serine residues, and two were phosphorylated at serine and threonine residues. The overall ratio of phosphoserine to phosphothreonine was 6:1. The transformed cell line B4 expressed two polyomavirus-specific phosphoproteins: large T antigen, which was only weakly phosphorylated, and a truncated form of large T antigen of 34,000 molecular weight which was heavily phosphorylated. Both showed phosphorylation patterns similar to that of large T antigen from infected cells. Peptide analyses of large T antigens encoded by the deletion mutants dl8 and dl23 or of specific fragments of wild-type large T antigen indicated that the phosphorylation sites are located in an amino-terminal region upstream of residue 194. The amino acid composition of the phosphopeptides as revealed by differential labeling with various amino acids indicated that several phosphopeptides contain overlapping sequences and that all phosphorylation sites are located in four tryptic peptides derived from a region between Met71 and Arg191. Two of the potential phosphorylation sites were identified as Ser81 and Thr187. The possible role of this modification of large T antigen is discussed.  相似文献   

8.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.  相似文献   

9.
USP7/HAUSP is a key regulator of p53 and Mdm2 and is targeted by the Epstein-Barr nuclear antigen 1 (EBNA1) protein of Epstein-Barr virus (EBV). We have determined the crystal structure of the p53 binding domain of USP7 alone and bound to an EBNA1 peptide. This domain is an eight-stranded beta sandwich similar to the TRAF-C domains of TNF-receptor associated factors, although the mode of peptide binding differs significantly from previously observed TRAF-peptide interactions in the sequence (DPGEGPS) and the conformation of the bound peptide. NMR chemical shift analyses of USP7 bound by EBNA1 and p53 indicated that p53 binds the same pocket as EBNA1 but makes less extensive contacts with USP7. Functional studies indicated that EBNA1 binding to USP7 can protect cells from apoptotic challenge by lowering p53 levels. The data provide a structural and conceptual framework for understanding how EBNA1 might contribute to the survival of Epstein-Barr virus-infected cells.  相似文献   

10.
Tumor suppressors of the retinoblastoma susceptibility gene family regulate cell growth and differentiation. Polyomavirus large T antigens (large T) bind Rb family members and block their function. Mutations of large T sequences conserved with the DnaJ family affect large T binding to a cellular DnaK, heat shock protein 70. The same mutations abolish large T activation of E2F-containing promoters and Rb binding-dependent large T activation of cell cycle progression. Cotransfection of a cellular DnaJ domain blocks wild-type large T action, showing that the connection between the chaperone system and tumor suppressors is direct. Although they are inactive in assays dependent on Rb family binding, mutants in the J region retain the ability to associate with pRb, p107, and p130. This suggests that binding of Rb family members by large T is not sufficient for their inactivation and that a functional J domain is required as well. This work connects the DnaJ and DnaK molecular chaperones to regulation of tumor suppressors by polyomavirus large T.  相似文献   

11.
12.
The efficiency of replication of plasmids containing the control region of polyomavirus DNA including one, two, or all three of the strong binding sites for large T antigen was measured in COP 8 cells which provide polyomavirus T antigen in trans. It was found that plasmids carrying only binding site A (the one closest to the origin core region) exhibited only 10% of the replication competence of plasmids with binding sites A and B or A and C. Plasmids containing all three binding sites, A, B, and C, did not replicate more efficiently than those with only two strong T-antigen-binding sites. We conclude, therefore, that optimal T-antigen-dependent replication of polyomavirus DNA requires two high-affinity T-antigen-binding sites.  相似文献   

13.
J Zerrahn  F Tiemann    W Deppert 《Journal of virology》1996,70(10):6781-6789
Expression of the simian virus 40 large T antigen (large T) in F111 rat fibroblasts generated only minimal transformants (e.g., F5 cells). Interestingly, F111-derived cells expressing only an amino-terminal fragment of large T spanning amino acids 1 to 147 (e.g., FR3 cells), revealed the same minimal transformed phenotype as F111 cells expressing full-length large T. This suggested that in F5 cells the transforming domain of large T contained within the C-terminal half of the large T molecule, and spanning the p53 binding domain, was not active. Progression to a more transformed phenotype by coexpression of small t antigen (small t) could be achieved in F5 cells but not in FR3 cells. Small-t-induced progression of F5 cells correlated with metabolic stabilization of p53 in complex with large T: whereas in F5 cells the half-life of p53 in complex with large T was only slightly elevated compared with that of (uncomplexed) p53 in parental F111 cells or that in FR3 cells, coexpression of small t in F5 cells led to metabolic stabilization and to high-level accumulation of p53 complexed to large T. In contrast, coexpression of small t had no effect on p53 stabilization or accumulation in FR3 cells. This finding strongly supports the assumption that the mere physical interaction of large T with p53, and thus p53 inactivation, in F5 cells expressing large T only does not reflect the main transforming activity of the C-terminal transforming domain of large T. In contrast, we assume that the transforming potential of this domain requires activation by a cellular function(s) which is mediated by small t and correlates with metabolic stabilization of p53.  相似文献   

14.
The formation of oligomers of simian virus 40 (SV40) large T antigen in SV40-infected and -transformed monkey cells was analyzed by sucrose density gradient centrifugation. The overall distribution of total T antigen during lytic infection showed mainly low-molecular-weight forms (monomers and dimers) in the early phase (10 h postinfection) and an increase in the number of oligomers in the late phase of the lytic cycle (36 h postinfection), indicating an accumulation of these final products. In contrast, studying the conversion of newly synthesized T antigen into oligomers by appropriate pulse-chase radiolabeling of infected cells revealed that this processing decelerates considerably during the late phase of infection. This mechanism can be reaccelerated by blocking DNA replication with aphidicolin. Since none of these results could be obtained by using synchronized SV40-transformed monkey cells (COS-1), these observations are compatible with the idea that the process of T antigen oligomerization may be involved in viral, but not in cellular, DNA synthesis.  相似文献   

15.
A mutation in polyomavirus large T antigen which affects viral DNA synthesis was discovered in strain NG59RA (RA). The effect was most visible in nonpermissive cells. Although a substantial yield in DNA synthesis is normally observed in infections of Fischer rat cells when these are maintained at 33 degrees C (D.L. Hacker, K.H. Friderici, C. Priehs, S. Kalvonjian, and M.M. Fluck, p. 173-181, in R.E. Moses and W.C. Summers, ed., DNA Replication and Mutagenesis, 1988; D.L. Hacker and M.M. Fluck, Mol. Cell. Biol., in press), a 10- to 20-fold decrease in yield was obtained in infections with RA. The yield of free viral DNA in RA transformants was also strongly diminished, whether the transformants were maintained at 37 or 33 degrees C. A large reduction in the apparent number of integration sites, as well as a small reduction in the incidence of tandem integration of the viral genome, was observed in F-111 or FR-3T3 cells transformed by the mutant strain. This appears not to be directly related to the number of integration templates. A DNA fragment was identified which rescues these phenotypes. The fragment is located between the HindIII and NsiI restriction sites (nucleotides 1656 to 1910), a region which encodes only large T antigen. Sequence analysis of this region reveals a C-to-G transition at nucleotide 1791 which causes a proline-to-alanine change in the amino acid sequence of large T antigen. No other mutations have been previously reported in this region of large T antigen.  相似文献   

16.
Polyomavirus large T antigen (LT) is a multifunctional nuclear protein. LT has two nuclear localization signals (NLS2), one spanning residues 189 to 195 (NLS1) and another spanning residues 280 to 286 (NLS2). Site-directed mutagenesis showed that each signal contains at least two critical residues. The possibility of connections between NLSs and adjacent phosphorylations has attracted much attention. Cytoplasmic LT (CyT) mutants were underphosphorylated, particularly at sites adjacent to NLS2. However, since a nuclear LT bearing an inactivated NLS2 was phosphorylated normally at adjacent sites, the signal was not directly required for phosphorylation. Conversely, LT could be translocated to the nucleus via NLS2 even when the adjacent phosphorylation sites were deleted. CyT was examined to probe the importance of LT localization. CyT was unable to perform LT functions related to interactions with retinoblastoma susceptibility gene (pRb) family members. Hence, CyT was unable to immortalize primary cells or to transactivate an E2F-responsive promoter. Consistent with these findings, CyT, though capable of binding pRb in vitro, did not cause relocalization of pRb in cells. Assays of transactivation of the simian virus 40 late promoter and of the human c-fos promoter showed that defects of CyT were not limited to functions dependent on pRb interactions.  相似文献   

17.
As an alternative to primary fetal tissue, immortalized central nervous system (CNS)-derived cell lines are useful for in vitro CNS model systems and for gene manipulation with potential clinical use in neural transplantation. However, obtaining immortalized cells with a desired phenotype is unpredictable, because the molecular mechanisms of growth and differentiation of CNS cells are poorly understood. The SV40 large T antigen is commonly used to immortalize mammalian cells, but it interferes with multiple cell-cycle components, including p53, p300, and retinoblastoma protein, and usually produces cells with undifferentiated phenotypes. In order to increase the phenotypic repertoire of immortalized CNS cells and to address the molecular mechanisms underlying immortalization and differentiation, we constructed an expression vector containing a truncated SV40 large T gene that encodes only the amino-terminal 155 amino acids (T155), which lacks the p53-binding domain. Constructs were first transfected into a p53-temperature-sensitive cell line, T64-7B. Colonies expressing T155 proliferated at the growth-restrictive temperature. T155 was then transfected into primary cultures from embryonic day-14 rat mesencephalon. Two clonal cell lines were derived, AF-5 and AC-10, which co-expressed T155 and mature neuronal and astrocytic markers. Thus, the amino-terminal portion of SV40 large T is sufficient to: (1) overcome p53-mediated growth arrest despite the absence of a p53-binding region, and (2) immortalize primary CNS cells expressing mature markers while actively dividing. T155 and T155-transfectants may be useful for further studies of cell-cycle mechanisms and phenotyic expression in CNS cells or for further gene manipulation to produce cells with specific properties.  相似文献   

18.
We have examined the influence of ATP on the DNA-binding properties of polyomavirus large T antigen (Py TAg). Utilizing nitrocellulose filter binding, DNase I footprinting, and gel mobility shift assays, we observed that ATP increased Py TAg binding to DNA fragments containing either all Py TAg-binding sites (whole origin) or those sites within (core origin) or adjacent to (early) the origin of replication. Even nonspecific binding to DNA fragments lacking Py TAg-binding sites was increased somewhat by ATP. Binding to the core origin was increased to a greater extent than binding to other DNA fragments tested. Gel band mobility shift assays revealed that ATP increased the production of core origin-specific Py TAg-DNA complexes of high molecular weight. ATP stimulation depended on the presence of MgCl2. Other nucleotides and nonhydrolyzable ATP analogs also increased Py TAg binding to the core origin but to various degrees: ATP, dATP, 5'-adenylyl imidodiphosphate (AMPPNP) greater than 5'-adenylyl methylenediphosphate (AMPPCP) greater than dCTP greater than UTP greater than TTP. GTP and dGTP did not increase DNA binding by Py TAg. The rates of association and disassociation of Py TAg with all the DNA fragments were altered by the presence of ATP. DNase I footprinting showed that ATP extensively extended the region protected within the core origin and also produced a distinctive DNase I-hypersensitive site on the late strand at nucleotides 5255 to 5262 (TTACTATG).  相似文献   

19.
Middle-T antigen of mouse polyomavirus (MomT) associates with the cellular tyrosine kinases c-Src, c-Yes, and Fyn, while middle-T antigen of hamster polyomavirus (HamT) exclusively binds Fyn. This interaction is essential for polyomavirus-mediated transformation of cells in culture and tumor formation in animals. Here we show that the kinase domain of Fyn is sufficient for association with MomT but not for binding of HamT. We further demonstrate that a Fyn mutant lacking the SH2 domain is able to bind MomT but fails to associate with HamT, indicating that the SH2 domain of Fyn is essential for stable association with HamT. HamT, but not MomT, contains a tyrosine residue, Tyr-324, in the sequence context YEEI. Mutation of Tyr-324 to phenylalanine led to a drastic reduction of associated Fyn and abolished the oncogenicity of HamT. This suggests that Tyr-324 is the major phosphotyrosine residue mediating the binding of HamT to the SH2 domain of Fyn. These findings show that mouse and hamster polyomaviruses use different strategies to target Src-related tyrosine kinases.  相似文献   

20.
We have identified a putative DNA-binding domain in polyomavirus large T antigen. Mutations introduced into the gene between amino acids 290 and 310 resulted in proteins that no longer bound to the high-affinity binding sites on the polyomavirus genome, showed no detectable nonspecific DNA binding, and were not able to initiate DNA replication from the viral origin. These mutant T antigen genes were introduced into rat embryo fibroblasts together with the neomycin resistance gene to allow selection for growth in the presence of G418. All the mutations tested facilitated the establishment of these cells in long-term culture at an efficiency indistinguishable from that of the wild-type protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号