首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choi YE  Harada E  Wada M  Tsuboi H  Morita Y  Kusano T  Sano H 《Planta》2001,213(1):45-50
In tobacco (Nicotiana tabacum L.), long and short trichomes can be distinguished morphologically. The established function of long trichomes is to exude a sticky gum containing diterpenes, whereas that of short trichomes is not known. When tobacco seedlings were exposed to toxic levels of cadmium (Cd), growth was retarded, but trichome number was increased up to 2-fold in comparison with untreated samples. Observation by variable-pressure scanning electron microscopy (VP-SEM) indicated that large crystals of 150 μm in size were formed on head cells of both short and long trichomes. An energy-dispersive X-ray analysis system fitted with VP-SEM revealed the crystals to contain amounts of Cd and calcium (Ca) at much higher concentrations than in the head cells themselves. Transmission electron microscopy demonstrated crystal formation in amorphous osmiophilic deposits in vacuoles. When seedlings were treated with Cd in the presence of Ca, tolerance was increased in proportion to the increase in Ca concentration. These results indicate that tobacco plants actively exclude toxic Cd by forming and excreting Cd/Ca-containing crystals through the head cells of trichomes. Received: 26 June 2000 / Accepted: 20 September 2000  相似文献   

2.
Growth was severely inhibited when tobacco plants were exposed to toxic levels of cadmium (0.2 mM). However, when this treatment was combined with a high concentration of calcium (30 mM), the Cd-induced damage was strongly alleviated. Under these enhanced conditions, i.e., 30 mM Ca and 0.2 mM Cd, Ca crystals not only were heavily deposited in the leaves but were also actively excreted from the trichomes. The X-ray spectrum from our Energy Dispersive analysis revealed that both intra-and extracellular Ca crystals contained detectable amounts of Cd. Moreover, intracellular Ca deposition in the leaves was stimulated only by a high Ca concentration (30 mM); moderate levels of Ca (3 mM) or a toxic amount of Cd (0.2 mM) alone resulted in crystal deposition that was undetectable under a light microscope. In contrast, extracellular crystal formation on the trichomes was stimulated by toxic Cd treatment but not by high Ca concentrations alone. Finally, Inductively Coupled Plasma Spectroscopy revealed that a high level of Ca (30 mM) suppressed Cd accumulation while also increasing the endogeneous Ca concentration in the leaves. These observations imply that the amelioration of Ca against toxic Cd in tobacco plants is a result of not only the inhibition of Cd uptake, but also the extra-and intracellular sequestration of cadmium via Ca crystallization.  相似文献   

3.
The epidermis of wheat (Triticum aestivum L.) leaves contains trichomes that contribute to resistance to insect pests and drought tolerance. In the present study, we examined the effects of 6-benzylaminopurine (BA) and methyl jasmonate (MeJA) treatment on trichome development on the leaves of wheat cv. Norin 61 seedlings. Without phytohormone treatment, trichomes on the adaxial leaf surface were short (90 μm) and their density was low (3.6 trichomes/mm2). Both BA and MeJA treatments significantly increased the density of trichomes, and there were no significant differences between the phytohormone treatments. BA treatment increased trichome length to five times as long as that in the control, whereas MeJA treatment did not significantly affect trichome length. Since BA treatment concurrently increased the DNA content of the nuclei in trichome cells, endoreduplication of the nuclei is probably involved in trichome enlargement. These results indicate that even wheat cultivars with short trichomes retain the mechanisms for trichome enlargement and stimuli such as BA application can induce increased pubescence on wheat leaves.  相似文献   

4.
Plants cope with cadmium (Cd) stress by complexation with phytochelatins (Pc), metallothioneins and glutathione and sequestration within vacuoles. Especially glutathione was found to play a major role in Cd detoxification as Cd shows a high binding affinity towards thiols and as glutathione is a precursor for Pc synthesis. In the present study, we have used an immunohistochemical approach combined with computer-supported transmission electron microscopy in order to measure changes in the subcellular distribution of glutathione during Cd-stress in mesophyll cells and cells of different glandular trichomes (long and short stalked) of Cucurbita pepo L. subsp. pepo var. styriaca Greb. Even though no ultrastructural alterations were observed in leaf and glandular trichome cells after the treatment of plants with 50 µM cadmium chloride (CdCl2) for 48 h, all cells showed a large decrease in glutathione contents. The strongest decrease was found in nuclei and the cytosol (up to 76%) in glandular trichomes which are considered as a major side of Cd accumulation in leaves. The ratio of glutathione between the cytosol and nuclei and the other cell compartments was strongly decreased only in glandular trichomes (more than 50%) indicating that glutathione in these two cell compartments is especially important for the detoxification of Cd in glandular trichomes. Additionally, these data indicate that large amounts of Cd are withdrawn from nuclei during Cd exposure. The present study gives a detailed insight into the compartment-specific importance of glutathione during Cd exposure in mesophyll cells and glandular trichomes of C. pepo L. plants.  相似文献   

5.
Habitat complexity can mediate interactions among predators and herbivores and influences arthropod population density and community structure. The abundance of many predatory mites (Acari: Phytoseiidae) is positively associated with abundance of non‐glandular trichomes. We hypothesized that (1) increasing the complexity (trichome density mimicked with cotton fiber patches) of the habitat that predatory mites encounter on leaves would reduce adult dispersal from plants, and (2) increasing habitat complexity would reduce the time that mites spend walking. Typhlodromus pyri Scheuten retention on plants increased linearly in the presence of trichome mimics; mites placed on plants lacking leaf trichomes showed a behavioral response that led to active dispersal. Phytoseiid retention increased with both fiber patch size and fiber density within patches. Moving fiber patches from the underside of the leaf to the upper leaf surface did not change phytoseiid retention but did alter egg distribution, suggesting trichomes do not exclusively influence phytoseiid behavior. Phytoseiid activity level as measured by the amount of time spent walking did not decrease with the addition of fibers. Overall, increasing habitat complexity in the form of non‐glandular trichomes strongly reduced T. pyri dispersal behavior; the predatory mites showed a consistent preference for complex trichome‐rich habitat that was manifest both rapidly and in absence of predators. Hence, the frequently observed pattern of population‐level accumulation of phytoseiids on trichome‐rich plants appears to be driven by a behavioral response to the presence and abundance of non‐glandular trichomes on the leaf surface manifested in the level of dispersal and/or retention. The primary implication of phytoseiid–habitat interactions for biocontrol programs is that where plants have no trichomes, T. pyri will not establish. Whether this behavioral response pattern is a general response of phytoseiids to leaf trichomes or varies with species is a question that remains unanswered.  相似文献   

6.
Structures on the surfaces of leaves, such as dense layers of non-glandular trichomes, strongly affect phylloplane mite activities. On the other hand the feeding of eriophyoid mites on leaf surfaces can cause hyperplasia of leaf trichomes (erinea formation). In many cases the hyperplasia is accompanied by the accumulation of pigments within trichome cells, causing an impressive red-brown colouration of the erineum. There is no information, however, on the structure of these pigments as well as on the chemical alterations in the phenolic content of plant trichomes in response to mite attack. Erinea formation on the abaxial surface of Quercus ilex leaves upon Aceria ilicis (Acari: Eriophyoidea) attack provides an excellent model on this topic. Differences in the structure and chemical composition of isolated trichomes derived either from healthy (normal trichomes) or mite attacked (hypertrophic trichomes) leaves were examined. Carbon investment was comparable between the two different trichome types, but the cell walls of the hypertrophic trichomes appeared thinner and did not contain microcrystalline cellulose. Observations under the fluorescence microscope showed that the emitted fluorescence was different between the two trichome types, indicating a different composition in fluorescencing phenolic compounds. The chemical analyses confirmed that hypertrophic trichomes contained higher concentrations of the feeding deterrents proanthocyanidin B3 and catechin, as well as of quercetin-3-O-glucoside, but lower concentrations of acylated flavonoid glycosides, than the normal ones. The results showed that the structural and functional changes in leaf trichomes upon mite attack may be an effort of the leaf to compensate the damage caused by the pest.  相似文献   

7.
Glandular trichomes are the phytochemical factories of plants, and they secrete a wide range of commercially important natural products such as lipids, terpenes and flavonoids. Herein, we report that the Nicotiana tabacum LTP1 (NtLTP1) gene, which is specifically expressed in long glandular trichomes, plays a role in lipid secretion from trichome heads. NtLTP1 mRNA is abundantly transcribed in trichomes, but NtLTP3, NtLTP4 and NtLTP5 are not. In situ hybridization revealed that NtLTP1 mRNAs accumulate specifically in long trichomes and not in short trichomes or epidermal cells. X-gluc staining of leaves from a transgenic plant expressing the NtLTP1 promoter fused to a GUS gene revealed that NtLTP1 protein accumulated preferentially on the tops of long glandular trichomes. GFP fluorescence from transgenic tobacco plants expressing an NtLTP1-GFP fusion protein was localized at the periphery of cells and in the excreted liquid droplets from the glandular trichome heads. In vitro assays using a fluorescent 2-p-toluidinonaphthalene-6-sulfonate probe indicated that recombinant NtLTP1 had lipid-binding activity. The overexpression of NtLTP1 in transgenic tobacco plants resulted in the increased secretion of trichome exudates, including epicuticular wax. In transgenic NtLTP1-RNAi lines, liquid secretion from trichomes was strongly reduced, but epicuticular wax secretion was not altered. Moreover, transgenic tobacco plants overexpressing NtLTP1 showed increased protection against aphids. Taken together, these data suggest that NtLTP1 is abundantly expressed in long glandular trichomes, and may play a role in lipid secretion from long glandular trichomes.  相似文献   

8.
Electron microscopy confirms previous light microscope observations that tobacco leaf trichomes are glandular and that there are two different types. Both the tall trichome (multicellular stalk, unicellular or multicellular head) and the short trichome (unicellular stalk; multicellular head) exhibit characteristics common to gland cells—a dense cytoplasm, numerous mitochondria, and little vacuolation. The tall trichome contains structurally well developed chloroplasts and an elaborate network of endoplasmic reticulum. The short trichome contains undifferentiated plastids and endoplasmic reticulum which parallels the nucleus and plasmalemma. Few dictyosomes are seen either in the short trichome or in the tall trichome. The short trichome appears to undergo structural changes concurrently with the appearance of secretory product within the cells. The most noticeable change is the formation of the extraplasmic space between the cell wall and the plasmalemma. Electron dense secretory product is observed between the plasmalemma and the cell wall and within the intercellular spaces.  相似文献   

9.
1. Foliar trichomes clearly reduce chewing damage and efficiency of movement by some insect herbivores, but the effect of trichomes on insect oviposition is less well characterised. Trichomes are likely to have particularly strong, negative effects on species that require secure attachment of the egg to the leaf epidermis for successful transition to the feeding stage – a group that includes many leaf mining insects. 2. One such species, Micrurapteryx salicifoliella, must initially enter leaf cells directly from an egg adhered to the cuticle, but later instars can move between leaves and initiate new mines from the leaf exterior. 3. Natural patterns of occurrence by M. salicifoliella were quantified on 10 sympatric Salix species varying in trichome expression to test whether trichomes were associated with reduced oviposition, larval survival and leaf damage. 4. Mean egg density and leaf mining damage were negatively related to mean trichome density across Salix species. Survival of M. salicifoliella from egg to pupa was positively related to trichome density, suggesting that initiation of new mines by late‐instar larvae was not adversely affected by trichomes. There was no evidence that trichomes benefited leaf miner larvae indirectly by decreasing density‐dependent mortality; rather, the positive relationship between trichome density and larval survival may reflect less effective chemical defence by Salix species expressing high trichome density. 5. The results suggest that foliar trichomes serve as an effective defence against M. salicifoliella by deterring oviposition, but do not reduce the survivorship of those individuals that successfully transition from egg to larva.  相似文献   

10.
Picris divaricata Vant., a plant species native to subtropical China, was recently identified as the first Cd/Zn hyperaccumulator from Asteraceae. P. divaricata was grown from wild collected seed for 4 months in a series of pH adjusted test soils with added Zn levels 0–7000 mg kg−1 and Cd levels 0–150 mg kg−1. Plants did not hyperaccumulate Zn (threshold >3000 μg g−1) and weakly hyperaccumulated Cd with little or no dose–response.P. divaricata has multicellular simple trichomes concentrated on the leaf margins and midrib. X-ray analysis showed that Zn was concentrated in larger trichomes and epidermal cells adjacent to the trichome but virtually absent in other leaf tissues. Within the trichomes, Zn was localized in ovate spots around the tips of individual cells. These tips and other locations in the trichome cell contained black electron dense material when examined with transmission electron microscopy, some of which was identified as SiO2. Silicon and Mn were concentrated in the same areas as Zn. Si has been previously associated with alleviating Zn, Mn and Cd toxicity. Our results support this observation and further investigation is warranted.Calcium and P were concentrated in the distal tips of trichomes, similar to patterns previously observed for calcicole plants grown in elevated Ca soils. Overall, nonsecretory trichomes from many plant families may have a common origin as tissues adapted to handle a variety of environmental metals.  相似文献   

11.
Seedlings of three elm species with variable susceptibility to the elm leaf beetle (Pyrrhalta luteola Müller) (Coleoptera: Chrysomelidae) were subjected to three water stress treatments (no stress, low stress, and high stress) in a greenhouse experiment. The species tested were Ulmus pumila L. (Siberian elm = highly susceptible), U. parvifolia Jacq. (Chinese elm = resistant), and U. americana L. (American elm = intermediate). The seedlings were analyzed for changes in the levels of selected host traits (trichome density, foliar concentration of nitrogen [N], phosphorus [P], potassium [K], calcium [Ca], magnesium [Mg], iron [Fe], and manganese [Mn]), some of which had previously been implicated in resistance to the elm leaf beetle. Density of leaf abaxial surface trichomes (simple, bulbous, and total trichomes) and foliar Fe and Mg concentrations increased significantly in the highly susceptible Siberian elms under water stress. In contrast, stress reduced trichome density in the moderately susceptible American elms, but it had no effect on levels of foliar mineral nutrients. The stress treatments had no influence on host traits in the resistant Chinese elms. The results suggest that environmental stress can alter plant traits that are likely involved in determining resistance of elms to the elm leaf beetle.  相似文献   

12.
Resource availability and the trichome defenses of tomato plants   总被引:10,自引:0,他引:10  
We conducted two experiments to determine how resource availability influenced allocation by tomato (Lycopersicon esculentum) to trichomes, and how different patterns of trichome allocation by plants grown in different resource environments might then influence the behavior of tobacco hornworm (Manduca sexta) caterpillars. In the first experiment we used high and low levels of light and water, and then, using scanning electron microscopy, determined trichome densities on the leaves and stems. We sampled leaves and stems at several places throughout the plant to determine whether there were within-plant differences in allocation to trichomes. The results of the first experiment showed that resource availability influenced allocation to trichome growth. Patterns in high and low-light supported both the growth-differentiation balance hypothesis (GDBH) and the carbon-nutrient balance hypothesis (CNBH). However, the GDBH was not supported by differences among water treatments. Contrary, to predictions of the GDBH, plants with intermediate growth did not have the highest trichome densities, and plants with similar growth differed in trichome density. Possible biological and artifactual explanations are discussed. The first experiment also showed that there was within-plant variation in allocation to trichomes, and that plant resource availability may influence within-plant variation in allocation to trichomes. In the second experiment, we grew plants in high and low-light, and then monitored the behavior of tobacco hornworms on the stems of these plants in the laboratory. This experiment demonstrated that the light environment that tomato plants were grown in influenced the resting behavior of caterpillars. Furthermore, it demonstrated that both glandular and non-glandular trichomes impeded caterpillars from searching for food. Overall, this study indicated that plant resource availability can influence allocation to trichome defenses, and that these differences may affect insect herbivores.  相似文献   

13.
Küpper H  Lombi E  Zhao FJ  McGrath SP 《Planta》2000,212(1):75-84
The cellular compartmentation of elements was analysed in the Zn hyperaccumulator Arabidopsis halleri (L.) O'Kane & Al-Shehbaz (=Cardaminopsis halleri) using energy-dispersive X-ray microanalysis of frozen-hydrated tissues. Quantitative data were obtained using oxygen as an internal standard in the analyses of vacuoles, whereas a peak/background ratio method was used for quantification of elements in pollen and dehydrated trichomes. Arabidopsis halleri was found to hyperaccumulate not only Zn but also Cd in the shoot biomass. While large concentrations of Zn and Cd were found in the leaves and roots, flowers contained very little. In roots grown hydroponically, Zn and Cd accumulated in the cell wall of the rhizodermis (root epidermis), mainly due to precipitation of Zn/Cd phosphates. In leaves, the trichomes had by far the largest concentrations of Zn and Cd. Inside the trichomes there was a striking sub-cellular compartmentation, with almost all the Zn and Cd being accumulated in a narrow ring in the trichome base. This distribution pattern was very different from that for Ca and P. The epidermal cells other than trichomes were very small and contained lower concentrations of Zn and Cd than mesophyll cells. In particular, the concentrations of Cd and Zn in the mesophyll cells increased markedly in response to increasing Zn and Cd concentrations in the nutrient solution. This indicates that the mesophyll cells in the leaves of A. halleri are the major storage site for Zn and Cd, and play an important role in their hyperaccumulation. Received: 4 April 2000 / Accepted: 16 May 2000  相似文献   

14.
Theory predicts that trade-offs between resistance to herbivory and other traits positively affecting fitness can maintain genetic variation in resistance within plant populations. In the perennial herb Arabidopsis lyrata, trichome production is a resistance trait that exhibits both qualitative and quantitative variation. Using a paternal half-sib design, we conducted two greenhouse experiments to ask whether trichomes confer resistance to oviposition and leaf herbivory by the specialist moth Plutella xylostella, and to examine potential genetic constraints on evolution of increased resistance and trichome density. In addition, we examined whether trichome production is induced by insect herbivory. We found strong positive genetic and phenotypic correlations between leaf trichome density and resistance to leaf herbivory, demonstrating that the production of leaf trichomes increases resistance to leaf damage by P. xylostella. Also resistance to oviposition tended to increase with increasing leaf trichome density, but genetic and phenotypic correlations were not statistically significant. Trichome density and resistance to leaf herbivory were negatively correlated genetically with plant size in the absence of herbivores, but not in the presence of herbivores. There was no evidence of increased trichome production after leaf damage by P. xylostella. The results suggest that trichome production and resistance to leaf herbivory are associated with a cost and that the direction of selection on resistance and trichome density depends on the intensity of herbivory.  相似文献   

15.
A homozygous recessive mutant of Arabidopsis thaliana has been selected which displays altered patterns of cellulose deposition. The mutant was selected because leaf and stem trichomes lacked the strong birefringence under polarized light which is characteristic of plant cells which contain highly ordered cellulose in their secondary cell walls. Compared with wild-type A. thaliana, this mutant (designated tbr for trichome birefringence) also displays reduced birefringence in the xylem of the leaf. Direct chemical analyses of root, stem, and leaf tissues, including isolated leaf trichomes, support the conclusion that tbr is impaired in its ability to deposit secondary wall cellulose in specific cell types, most notably in trichomes where the secondary wall appears to be totally absent. Altered patterns of wound-induced callose deposition in trichomes and surrounding cells is another trait which also co-segregates with the tbr mutation.  相似文献   

16.
There is a spectacular variability in trichome types and densities and trichome metabolites across species, but the functional implications of this variability in protecting from atmospheric oxidative stresses remain poorly understood. The aim of this study was to evaluate the possible protective role of glandular and non‐glandular trichomes against ozone stress. We investigated the interspecific variation in types and density of trichomes and how these traits were associated with elevated ozone impacts on visible leaf damage, net assimilation rate, stomatal conductance, chlorophyll fluorescence, and emissions of lipoxygenase pathway products in 24 species with widely varying trichome characteristics and taxonomy. Both peltate and capitate glandular trichomes played a critical role in reducing leaf ozone uptake, but no impact of non‐glandular trichomes was observed. Across species, the visible ozone damage varied 10.1‐fold, reduction in net assimilation rate 3.3‐fold, and release of lipoxygenase compounds 14.4‐fold, and species with lower glandular trichome density were more sensitive to ozone stress and more vulnerable to ozone damage compared to species with high glandular trichome density. These results demonstrate that leaf surface glandular trichomes constitute a major factor in reducing ozone toxicity and function as a chemical barrier that neutralizes the ozone before it enters the leaf.  相似文献   

17.
18.
19.
Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants.  相似文献   

20.
This study was to report and describe the formation of Ca oxalate crystals and to explore whether there is any correlation between their abundant formation and the ability of plant to uptake and accumulate high levels of toxic metals. Soil-grown Corchorus olitorius L. (Tiliaceae) seedlings were further grown in water culture in the presence of Cd, Pb, Cu, or Al (0–10 g/ml) for 20 days. Light and electron microscopic examinations revealed a large number of intracellular prismatic-shaped Ca oxalate crystals in both leaf and callus cells. Crystals were formed in the vacuole, a single large crystal being formed per cell. The crystal-containing cells differed in size and shape from crystal-free cells, they were rich in organelles, membranes, and vesicles and have dense cytoplasm, enlarged nucleus and modified starch-lacking plastids with few grana. These cells look highly active. Corchorus plants treated with Cd, Pb, Cu, and Al accumulated these metals to the levels several times higher than untreated plants. The contents of Pb, Cd, Al, and Cu in leaf tissues of plants grown in the presence of 5 g/ml of these metals were 10, 20, 25, and 40 times higher, respectively, than those in plants grown on media devoid of them. X-ray microanalysis of Ca oxalate crystals in leaves from plants exposed to 5 g/ml Cd, Pb, Al, or Cu indicated the incorporation only of Al into these crystals. Results of this paper suggest a possible contribution for Ca oxalate-crystal formation in sequestering and tolerance of at least some toxic metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号