首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmembrane movement of radiolabeled, nonmetabolizable glucose analogs in Streptococcus mutants Ingbritt was studied under conditions of differing transmembrane electrochemical potentials (delta psi) and pH gradients (delta pH). The delta pH and delta psi were determined from the transmembrane equilibration of radiolabeled benzoate and tetraphenylphosphonium ions, respectively. Growth conditions of S. mutants Ingbritt were chosen so that the cells had a low apparent phosphoenolpyruvate (PEP)-dependent glucose:phosphotransferase activity. Cells energized under different conditions produced transmembrane proton potentials ranging from -49 to -103 mV but did not accumulate 6-deoxyglucose intracellularly. An artificial transmembrane proton potential was generated in deenergized cells by creating a delta psi with a valinomycin-induced K+ diffusion potential and a delta pH by rapid acidification of the medium. Artificial transmembrane proton potentials up to -83 mV, although producing proton influx, could not accumulate 6-deoxyglucose in deenergized cells or 2-deoxyglucose or thiomethylgalactoside in deenergized, PEP-depleted cells. The transmembrane diffusion of glucose in PEP-depleted, KF-treated cells did not exhibit saturation kinetics or competitive inhibition by 6-deoxyglucose or 2-deoxyglucose, indicating that diffusion was not facilitated by a membrane carrier. As proton-linked membrane carriers have been shown to facilitate diffusion in the absence of a transmembrane proton potential, the results therefore are not consistent with a proton-linked glucose carrier in S. mutans Ingbritt. This together with the lack of proton-linked transport of the glucose analogs suggests that glucose transmembrane movement in S. mutans Ingbritt is not linked to the transmembrane proton potential.  相似文献   

2.
Lactose-grown cells of Bacillus alcalophilus actively transported methylthio-beta, D-galactoside (TMG) in a range of pH values from 7.5 to 10.5 with a pH optimum at 8.5. The TMG was accumulated in a chemically unmodified form, and cell extracts failed to catalyze either ATP or P-enolpyruvate-dependent phosphorylation of TMG. At pH 8.5, the lactose-grown cells exhibited a transmembrane proton gradient (deltapH) of 1.38 units, interior acid, and a transmembrane electrical potential (delta psi) of -132 mV. Accordingly, the total protonmotive force at this pH was very low, -51mV. Several lines of evidence indicate that the protonmotive force or delta psi did not directly energize TMG transport but, rather, that ATP was directly required: (a) in cells treated with arsenate so that the delta psi was unaffected and cellular ATP levels were markedly lowered, TMG transport was inhibited in proportion to the reduction of cellular ATP, while electrogenic alpha-aminoisobutyric acid transport was not; (b) when a valinomycin-induced potassium diffusion potential was established in starved cells, alpha-aminoisobutyric acid transport, but not TMG transport, was stimulated; and (c) in a series of experiments in which the delta psi was rapidly abolished by treatment with gramicidin, ATP levels declined slowly and the rate of TMG transport correlated directly with ATP levels rather than with the delta psi. Consumption of cellular ATP concomitant with TMG transport could be demonstrated.  相似文献   

3.
Isolated membrane vesicles from the obligately acidophilic bacterium Bacillus acidocaldarius generated an electrochemical gradient of protons (delta mu- H+) upon energization with ascorbate-phenazine methosulfate at pH 6.0 or 3.0. At pH 6.0, there was little or no transmembrane pH gradient (delta pH), but a transmembrane electrical potential (delta psi) of ca. -77 mV, positive out, was observed. At pH 3.0, a delta pH equivalent to - 100 mV, acid out, and a delta psi of -73 mV, positive out, were observed upon energization. The total magnitude of the delta mu- H+ was higher than that of whole cells at acid pH, but the very large delta pHs and the reversed delta psi s, i.e., inside positive, that are typical of acidophile cells were not observed in the vesicles. The vesicles exhibited energy-dependent accumulation of alpha-aminoisobutyric acid that was inhibited by both nigericin and valinomycin (plus K+) at pH 3.0 but was inhibited little by nigericin at pH 6.0.  相似文献   

4.
E R Kashket 《Biochemistry》1982,21(22):5534-5538
The H+/ATP stoichiometry of the proton-translocating ATPase was investigated in growing and nongrowing, respiring cells of Escherichia coli. The protonmotive force, delta p, was determined by measuring the transmembrane chemical gradient of protons, delta pH, from the cellular accumulation of benzoate anions, and the electrical gradient, delta psi, from the accumulation of the lipophilic cation tetraphenylphosphonium (TPP+). The accumulation of lactose was also used to calculate the delta p in this lactose operon constitutive beta-galactosidase negative mutant. The phosphorylation potential, delta GP', was determined by measuring the cellular concentration of ATP, ADP, and inorganic phosphate. According to chemiosmotic principles, at steady state the phosphorylation potential is in thermodynamic equilibrium with the protonmotive force, and thus the ratio delta p/delta GP' can be used to determine the H+/ATP ratio. Respiring E. coli cells, in mid-exponential phase of growth or incubated in buffer, at external pHs from 6.25 to 8.25 had a constant delta GP' of about 500 mV. The H+/ATP ratio was found to be 3 when the delta p value derived from lactose accumulation levels was used. However, when the delta p values derived from delta pH and delta psi were used in the calculations, the H+/ATP ratio varied from about 2.5 at external pH 6.25 to about 4 at pH 8.25. Arguments are presented for the hypothesis that the delta psi values obtained from the TPP+ measurements are likely to be inaccurate and that a value of 3 H+/ATP, independent of the external pH, is likely to be the valid stoichiometry.  相似文献   

5.
The acidophilic and thermophilic bacterium, Bacillus acidocaldarius maintains a cytoplasmic pH between 5.85 and 6.31 over a range of external pH from 2.0 to 4.5. Consistently, the pH optimum of beta-galactosidase, as assayed in cell extracts, is between pH 6.0 and 6.5. An electrical potential (delta-psi), interior positive, is also maintained across the membrane. A delta-psi of approximately 34 mV was calculated from determinations of thiocyanate uptake by cells at pH 3.5. Addition of the proton conductor carbonyl cyanide m-chlorophenylhydrazone increased the delta-psi. Treatment of cells with valinomycin (in the absence of external potassium ions) or high concentrations of thiocyanate, to abolish the delta psi, resulted in collapse of the transmembrane proton gradient (delta pH). Active transport of methylthio-beta, D-galactoside occurred optimally at pH 3.5. Transport of the galactoside was inhibited by various compounds which could dissipate the transmembrane delta pH and by respiratory inhibitors. A decrease in the delta pH and an increase in the delta psi occurred upon addition of methylthio-beta, D-galactoside to cells of B. acidocaldarius. Thus the transport of this solute appears to involve an electrogenic symport with protons. The transport system is most active at 50 degrees C and shows little activity at 25 degrees C, although the delta pH is the same at the two temperatures. Gramicidin inhibits methylthio-beta, D-galactoside transport equally effectively at 50 degrees C and 25 degrees C, while nigericin inhibits only after a lag at 25 degrees C.  相似文献   

6.
D-Gluconate uptake was studied in whole cells of Arthrobacter pyridinolis; the uptake activity was inducible, mutable and showed saturation kinetics (Km = 5 micrometer). Uptake of D-gluconate was not mediated by a phosphoenol-pyruvate : hexose phosphotransferase system, nor was it directly energized by ATP. A transmembrane pH gradient, delta pH, of --63 mV was generated by A. pyridinolis cells at pH 6.5, while at pH 7.5, delta pH = 0. Addition of 8 micrometer D-gluconate significantly reduced the delta pH. The transmembrane electrical potential, delta psi, which was --87 mV over a range of pH from 5.5 to 7.5, was unaffected by the presence of substrate. D-Gluconate accumulated at the same rate and as the protonated solute, at both pH 6.5 and 7.5. Experiments in which a diffusion potential was generated in cyanide-treated cells, indicated that the delta psi did not energize transport. Rather, the rate of D-gluconate uptake metabolism: (a) treatment of cells with valinomycin or nigericin, under conditions in which there was a loss of intracellular potassium, inhibited both D-gluconate uptake and the metabolism of pre-accumulated D-gluconate; (b) the effects of cyanide and azide on D-gluconate uptake were much more severe at pH 6.5 than pH 7.5, a pattern which paralleled the effects of these inhibitors on D-gluconate metabolism; (c) extraction and chromatography of intracellular label from D-gluconate uptake revealed that accumulation of unaltered D-gluconate was negligible; (d) a series of mutant strains with lower D-gluconate kinase activities also exhibited low rates of D-gluconate uptake; (e) spontaneous revertants of these mutant strains consistently regained both D-gluconate kinase activity and wild type levels of uptake.  相似文献   

7.
S Ramos  H R Kaback 《Biochemistry》1977,16(5):854-859
In the previous paper [ramos, S., and Kaback, H.R. (1977), Biochemistry 16 (preceding paper in this issue)], it was demonstrated that Escherichia coli membrane vesicles generate a large electrochemical proton gradient (delta-muH+) under appropriate conditions, and some of the properties of delta-muH+ and its component forces [i.e., the membrane potential (delta psi) and the chemical gradient of protons (deltapH)] were described. In this paper, the relationship between delta-muH+, delta psi, and deltapH and the active transport of specific solutes is examined. Addition of lactose or glucose 6-phosphate to membrane vesicles containing the appropriate transport systems results in partial collapse of deltapH, providing direct evidence for the suggestion that respiratory energy can drive active transport via the pH gradient across the membrane. Titration studies with valinomycin and nigericin lead to the conclusion that, at pH 5.5, there are two general classes of transport systems: those that are driven primarily by delta-muH+ (lactose, proline, serine, glycine, tyrosine, glutamate, leucine, lysine, cysteine, and succinate) and those that are driven primarily by deltapH (glucose 6-phosphate, D-lactate, glucuronate, and gluconate). Importantly, however, it is also demonstrated that at pH 7.5, all of these transport systems are driven by delta psi which comprises the only component of delta-muH+ at this external pH. In addition, the effect of external pH on the steady-state levels of accumulation of different solutes is examined, and it is shown that none of the pH profiles correspond to those observed for delta-muH+, delta psi, or deltapH. Moreover, at external pH values above 6.0-6.5, delta-muH+ is insufficient to account for the concentration gradients established for each substrate unless the stoichiometry between protons and accumulated solutes is greater than unity. The results confirm many facets of the chemiosmotic hypothesis, but they also extend the concept in certain important respects and allow explanations for some earlier observations which seemed to preclude the involvement of chemiosmotic phenomena in active transport.  相似文献   

8.
Within the scope of a study on the effects of changes in medium composition on the proton motive force in Rhodopseudomonas sphaeroides, the energy coupling of sodium, phosphate, and potassium (rubidium) transport was investigated. Sodium was transported via an electroneutral exchange system against protons. The system functioned optimally at pH 8 and was inactive below pH 7. The driving force for the phosphate transport varied with the external pH. At pH 8, Pi transport was dependent exclusively on delta psi (transmembrane electrical potential), whereas at pH 6 only the delta pH (transmembrane pH gradient) component of the proton motive force was a driving force. Potassium (rubidium) transport was facilitated by a transport system which catalyzed the electrogenic transfer of potassium (rubidium) ions. However, in several aspects the properties of this transport system were different from those of a simple electrogenic potassium ionophore such as valinomycin: (i) accumulated potassium leaked very slowly out of cells in the dark; and (ii) the transport system displayed a threshold in the delta psi, below which potassium (rubidium) transport did not occur.  相似文献   

9.
The transmembrane electrical potential (delta psi) generated by Rickettsia prowazekii metabolizing glutamic acid or ATP was determined by flow dialysis with the lipophilic cation tetraphenylphosphonium and with lysine. At pH 7.0, the rickettsiae generated a delta psi as measured by tetraphenylphosphonium distribution of 90 mV. Under similar conditions, cells of R.prowazekii concentrated lysine to a gradient indicating a delta psi of 90 mV. Energy-starved cells of R. prowazekii were able to utilize exogenously supplied ATP as well as glutamic acid to generate a delta psi of 110 mV at pH 8.0. Lysine transport was markedly affected by environmental pH, the optimum pH ranging from 8.0 to 8.5. delta psi as measured with tetraphenyl-phosphonium was similarly affected in this system, with values ranging from 70 mV at pH 6.0 to 100 mV at pH 8.0. Respiration rates were also affected by the external pH, with a maximum rate of 28 nmol of O2 consumed per min per mg of rickettsial protein occurring at pH 8.0. The pH effects were readily reversible and with a rapid onset.  相似文献   

10.
The effect of the transmembrane potential (delta psi) and the proton concentration gradient (delta pH) across the chromaffin granule membrane upon the rate and extent of catecholamine accumulation was studied in isolated bovine chromaffin granules. Freshly isolated chromaffin granules had an intragranular pH of 5.5 as measured by [14C]methylamine distribution. The addition of ATP to a suspension of granules resulted in the generation of a membrane potential, positive inside, as measured by [14C]thiocyanate (SCN-) distribution. The addition of carboxyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), a proton translocator, resulted in a reversal of the potential to negative values (measured by [3H]tetramethylphenylphosphonium (TPMP+)) approaching -90 mV. Changing the external pH of a granular suspension incubated with FCCP produced a linear perturbation in the measured potential from positive to negative values, which can be explained by the distribution of protons according to their electrochemical gradient. When ammonia (1 to 50 mM) was added to highly buffered suspensions of chromaffin granules there was a dose-dependent decrease in the transmembrane proton gradient (delta pH) and an increase in the membrane potential (delta psi). On the other hand, thiocyanate or FCCP, at varying concentration, produced a dose-related collapse of the membrane potential and had no effect upon the transmembrane proton gradient. The addition of larger concentrations of catecholamines caused a decrease in the transmembrane proton gradient and an increase in the membrane potential. Time-resolved influx of catecholamines into the granules was studied radiochemically using low external catecholamine concentrations. The accumulation of epinephrine or norepinephrine was over one order of magnitude greater in the presence of ATP than in its absence. The rate and extent of amine accumulation was found to be related to the magnitude of the membrane potential at fixed transmembrane proton concentration (delta pH) values. Likewise, the accumulation was related to the magnitude of the delta pH at fixed membrane potential values. These results suggest that the existence of both a transmembrane proton gradient and a membrane potential are required for optimal catecholamine accumulation to occur.  相似文献   

11.
Washed cells of strain H18, a newly isolated ruminal selenomonad, decarboxylated succinate 25-fold faster than Selenomonas ruminantium HD4 (130 versus 5 nmol min-1 mg of protein-1, respectively). Batch cultures of strain H18 which were fermenting glucose did not utilize succinate, and glucose-limited continuous cultures were only able to decarboxylate significant amounts of succinate at slow (less than 0.1 h-1) dilution rates. Strain H18 grew more slowly on lactate than glucose (0.2 versus 0.4 h-1, respectively), and more than half of the lactate was initially converted to succinate. Succinate was only utilized after growth on lactate had ceased. Although nonenergized and glucose-energized cells had similar proton motive forces and ATP levels, glucose-energized cells were unable to transport succinate. Transport by nonenergized cells was decreased by small increases in osmotic strength, and it is possible that energy-dependent inhibition of succinate transport was related to changes in cell turgor. Since cells which were deenergized with 2-deoxyglucose or iodoacetate did not transport succinate, it appeared that glycogen metabolism was providing the driving force for succinate uptake. An artificial delta pH drove succinate transport in deenergized cells, but an artificial membrane potential (delta psi) could not serve as a driving force. Because succinate is nearly fully dissociated at pH 7.0 and the transport process was electroneutral, it appeared that succinate was taken up in symport with two protons. An Eadie-Hofstee plot indicated that the rate of uptake was unusually rapid at high substrate concentrations, but the low-velocity, high-affinity component could account for succinate utilization by stationary cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Washed cells of strain H18, a newly isolated ruminal selenomonad, decarboxylated succinate 25-fold faster than Selenomonas ruminantium HD4 (130 versus 5 nmol min-1 mg of protein-1, respectively). Batch cultures of strain H18 which were fermenting glucose did not utilize succinate, and glucose-limited continuous cultures were only able to decarboxylate significant amounts of succinate at slow (less than 0.1 h-1) dilution rates. Strain H18 grew more slowly on lactate than glucose (0.2 versus 0.4 h-1, respectively), and more than half of the lactate was initially converted to succinate. Succinate was only utilized after growth on lactate had ceased. Although nonenergized and glucose-energized cells had similar proton motive forces and ATP levels, glucose-energized cells were unable to transport succinate. Transport by nonenergized cells was decreased by small increases in osmotic strength, and it is possible that energy-dependent inhibition of succinate transport was related to changes in cell turgor. Since cells which were deenergized with 2-deoxyglucose or iodoacetate did not transport succinate, it appeared that glycogen metabolism was providing the driving force for succinate uptake. An artificial delta pH drove succinate transport in deenergized cells, but an artificial membrane potential (delta psi) could not serve as a driving force. Because succinate is nearly fully dissociated at pH 7.0 and the transport process was electroneutral, it appeared that succinate was taken up in symport with two protons. An Eadie-Hofstee plot indicated that the rate of uptake was unusually rapid at high substrate concentrations, but the low-velocity, high-affinity component could account for succinate utilization by stationary cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in intact 5-hydroxytryptamine (serotonin) containing dense granules. The granules were isolated and purified from other subcellular organelles under isotonic conditions utilizing a newly developed continuous density gradient of Percoll. As measured by [14C]methylamine distribution, isolated granules suspended in a highly buffered medium at pH 7.0 had an intragranular pH of 5.40, independent of the pH of the external medium. This pH gradient could be collapsed by the addition of 60 mM ammonia. In the presence of Mg-ATP, a transmembrane potential (delta psi) of 30-40 mV, inside positive, was generated and sustained for over 30 min, as measured by [14C]thiocyanate distribution. The addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a proton translocator, resulted in the reversal of the potential to negative values. The Mg-ATP-dependent generation of the delta psi was prevented by addition of dicyclohexylcarbodiimide and trimethyltin, inhibitors of proton-translocating ATPases in this and other subcellular organelles. Ammonia (1-50 mM) addition to highly buffered suspensions of serotonin granules caused a dose-dependent decrease in the delta pH, while thiocyanate added at varying concentrations produced a dose-related collapse of the delta psi and had no effect upon the delta pH. Both the delta pH and delta psi were found to independently drive accumulation of [14C]serotonin into the granules; stepwise collapse of each gradient resulted in a corresponding diminution of [14C]serotonin accumulation. The maximum rate and extent of [14C]serotonin uptake, however, were observed in the presence of both the delta pH and delta psi. The conclusions provide support for the existence of a proton-translocating ATPase in the serotonin granule membrane responsible for the generation of the delta pH and delta psi. Moreover, the results demonstrate a primary role for the electrochemical proton gradient (delta mu H+) in the carrier-mediated active transport of 5-hydroxytryptamine into the platelet granule.  相似文献   

14.
We have studied some features of K+ accumulation by glycolysing Mycoplasma mycoides var. Capri cells. We report that when Na+ is absent from the external medium, K+ accumulates up to the level predicted by the amplitude of the transmembrane electrical potential, delta psi m, measured by Rb+ and methyltriphenylphosphonium cation (TPMP+) distribution. Therefore, under these experimental conditions, the coupling mechanism of K+ uptake consists of a delta psi m-driven uniport. More important, when Na+ is present in the external medium, the level of K+ accumulation by glycolysing Mycoplasma cells is far too steep to be equilibrium with delta psi m (-120 mV for delta muK+ compared with -90mV for delta muRb+ or delta muTPMP+). Our results clearly indicate the presence in Mycoplasma of an active K+-transport system specifically stimulated by Na+. Furthermore, by controlling the amplitude of the energy-dependent delta muH+, we obtain strong evidence that this specific Na+-stimulated K+ transport is modulated by the transmembrane electrical potential. Finally, we show that ATP is consumed when such a transport system is in activity.  相似文献   

15.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

16.
The influence of nisin on the proton motive force (delta p) generated by glucose-energized cells of the obligate putrefactive anaerobe Clostridium sporogenes PA 3679 was determined. The components of delta p, the transmembrane potential (delta psi) and the pH gradient (delta pH), were determined from the distributions of the lipophilic cation [3H]TPP+ ([3H]tetraphenylphosphonium bromide) and [14C]salicylic acid, respectively. The cells maintained a constant delta p of -111 mV, consisting of a delta pH of 0.4 to 1.0 pH units at an external pH of 5 to 7 and a delta psi of -60 to -88 mV. Nisin, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N'-dicyclohexylcarbodiimide (DCCD) at pH 6.0 elicited the complete release of preaccumulated [3H]tetraphenylphosphonium bromide and [14C]salicylic acid, with a concomitant depletion of delta psi and delta pH. Nisin and DCCD caused rapid drops in intracellular ATP levels from 1.2 to 0.01 and 0.06 nmol/mg of cells (dry weight), respectively. Cells exposed to nisin and DCCD lost the ability to form colonies, thus suggesting that delta psi and delta pH are necessary for cell viability. The data suggest that depletion of delta p and exhaustion of cellular ATP reserves are the basis for nisin inhibition of C. sporogenes PA 3679.  相似文献   

17.
Nisin is a cationic antimicrobial peptide that belongs to the group of lantibiotics. It is thought to form oligomeric pores in the target membrane by a mechanism that requires the transmembrane electrical potential delta psi and that involves local pertubation of the lipid bilayer structure. Here we show that nisin does not form exclusively voltage-dependent pores: even in the absence of a delta psi, nisin is able to dissipate the transmembrane pH gradient (delta pH) in sensitive Lactococcus lactis cells and proteoliposomes. The rate of dissipation increases with the magnitude of the delta pH. Nisin forms pores only when the delta pH is inside alkaline. The efficiency of delta psi-induced pore formation is strongly affected by the external pH, whereas delta pH-induced pore formation is rather insensitive to the external pH. Nisin(1-12), an amino-terminal fragment of nisin, and (des-deltaAla5)-(nisin(1-32) amide have a strongly reduced capacity to dissipate the delta psi and delta pH in cytochrome c oxidase proteoliposomes and L. lactis cells. Both variants bind with reduced efficiency to liposomes containing negatively charged phospholipids, suggesting that both ring A and rings C to E play a role in membrane binding. Nisin(1-12) competes with nisin for membrane binding and antagonizes pore formation. These findings are consistent with the wedge model of nisin-induced pore formation.  相似文献   

18.
The electrochemical proton gradient in Mycoplasma cells   总被引:2,自引:0,他引:2  
The electrochemical proton gradient, delta mu H+ generated upon glycolysis by Mycoplasma mycoides var. Capri cells has been determined. The components, the transmembrane pH gradient, delta pH, and the membrane potential, delta psi, were measured using several methods. The determination of the delta pH was conducted by measuring the transmembrane distribution of weak acids (acetate and butyrate) and of a weak base (methylamine), using flow dialysis and filtration techniques. The transmembrane electrical potential was determined from the distribution of the lipophilic cation Ph3MeP+ and of Rb+ or K+ in the presence of valinomycin. At extra-cellular pH 7.2, glycolyzing Mycoplasma cells maintain an internal pH more alkaline (0.5 pH unit) than that of the milieu and an electrical potential of - 85 mV, interior negative. The delta mu H+ in M. mycoides var. Capri cells is thus about - 115 mV. When the external pH was altered from 7.7 to 5.7 delta psi decreased from - 90 mV to - 60 mV. On other hand although the internal pH decreased, delta pH was found to increase from 0.2 to 1.0 pH unit. Since the changes in delta psi were largely compensated by the changes in delta pH, delta mu H+ remained practically constant at about - 115 mV throughout the pH range tested. Finally, inhibition of delta pH by N,N'-dicyclohexylcarbodiimide, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or nigericin confirmed that chemiosmotic phenomena contribute to energy transduction across the membranes of M. mycoides var. Capri cells.  相似文献   

19.
The role of K+ and Na+ in the maintenance of the proton motive force (delta p) was studied in Escherichia coli incubated in alkaline media. Cells respiring in Tris buffer (pH 7.8) that contained less than 100 microEq of K+ and Na+ per liter had a normal delta p of about -165 mV. At pH 8.2, however, the delta p was reduced significantly. The decrease in delta p at pH 8.2 was due to a marked decrease in the transmembrane potential (delta psi), while the internal pH remained at 7.5 to 7.7. When KCl or NaCl, but not LiCl or choline chloride, was added to the cells, the delta psi rose to the values seen at an external pH of 7.8. In addition, choline chloride inhibited the enhancement of delta psi by K+. None of the salts had a significant effect on the internal pH. The effects can be attributed to alterations of K+ or Na+ cycling in and out of the cells via the known K+ and Na+ transport systems.  相似文献   

20.
Influx of Ca2+ into cells of Saccharomyces cerevisiae was measured under non-steady-state conditions, which enable measurements of the initial rate of transport across plasma membranes without interference by the vacuolar Ca2+ transport system. Removal of glucose from the incubation medium led to inactivation of Ca2+ influx within 5 min. Readdition of glucose led to a transient increase in the rate of Ca2+ transport, reaching a peak after 3-5 min. A second increase was observed 60-80 min later. To examine whether the first transient activation of Ca2+ influx by glucose was mediated by membrane hyperpolarization, influx of 45Ca2+ was measured in the presence and absence of metabolic substrates (glucose, glycerol, and glucose plus antimycin A) in cells hyperpolarized to different values of membrane potential (delta psi). Logarithms of the rate of Ca2+ influx were plotted against values of delta psi. Two different slopes were obtained, depending upon whether the metabolic substrate was present or absent. Ca2+ influx in the presence of the metabolic substrates was always higher than expected by their effect on delta psi. Glycerol plus antimycin A did not affect Ca2+ influx. It was concluded that metabolized substrates activate Ca2+ influx not only by effects on delta psi but also by additional mechanism(s). Since no simple correlation between Ca2+ influx and intracellular ATP levels was observed, it was concluded that ATP levels do not affect the initial rates of Ca2+ transport across the plasma membrane of S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号