首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle cells are surrounded by extracellular matrix, the components of which play an important role in signalling mechanisms involved in their development. In mice, loss of collagen XV, a component of basement membranes expressed primarily in skeletal muscles, results in a mild skeletal myopathy. We have determined the complete zebrafish collagen XV primary sequence and analysed its expression and function in embryogenesis. During the segmentation period, expression of the Col15a1 gene is mainly found in the notochord and its protein product is deposited exclusively in the peri-notochordal basement membrane. Morpholino mediated knock-down of Col15a1 causes defects in notochord differentiation and in fast and slow muscle formation as shown by persistence of axial mesodermal marker gene expression, disorganization of the peri-notochodal basement membrane and myofibrils, and a U-shape myotome. In addition, the number of medial fast-twitch muscle fibers was substantially increased, suggesting that the signalling by notochord derived Hh proteins is enhanced by loss of collagen XV. Consistent with this, there is a concomitant expansion of patched-1 expression in the myotome of morphant embryos. Together, these results indicate that collagen XV is required for notochord differentiation and muscle development in the zebrafish embryo and that it interplays with Shh signalling.  相似文献   

2.
3.
4.
Collagen XV is a million-dalton protein with a structural role in skeletal muscle and capillaries. As with all collagens, studies of its function are hindered by the absence of good structural data: collagens are triple-helical, non-crystallizable, multidomain proteins with extensive post-translational modification that are refractory to analysis by high-resolution structural techniques. For collagen XV, this situation is compounded by the fact that it is also a proteoglycan. In this issue of the Biochemical Journal, Myers and her colleagues use rotary shadowing electron microscopy to obtain images of purified collagen XV molecules that are sufficiently detailed to show the three-lobed structure of the N-terminus and individual glycosaminoglycan side chains. Individual molecules appear as knotted strands resembling a pretzel (a pastry snack folded in a unique figure-of-eight), which contrasts with our conventional image of collagen molecules as semi-rigid rods. Importantly, collagen XV multimerizes into cruciform structures in which simpler forms have two to four molecules per complex. Immunoelectron microscopy revealed knotted collagen XV complexes bridging collagen fibrils adjacent to basement membrane. These accomplishments are made all the more impressive by the fact that collagen XV was purified from human umbilical cord, in which the protein is represented at only (1-2)x10(-4)% of dry weight!  相似文献   

5.
Generation of double knockout mice for collagen types XV and XVIII indicated surprisingly that the mice are viable and do not suffer from any new major defects. Although the two collagens are closely related molecules sharing similarities in tissue expression, we conclude that their biological roles are essentially separate, that of type XV in muscle and type XVIII in the eye. Detailed comparisons of the null mice eyes indicated that type XV collagen seems to be involved in the tunica vasculosa lentis regression process, whereas type XVIII is in the regression of vasa hyaloidea propria, and only minor compensatory effects could be detected. Furthermore, the essential role of type XVIII collagen in the eye is highlighted by the occurrence of this collagen in the epithelial basement membranes of the iris and the ciliary body and in the inner limiting membrane of the retina, sites lacking type XV.  相似文献   

6.
Aortic carboxypeptidase-like protein (ACLP) was originally identified in vascular smooth muscle cells and contains discoidin and catalytically inactive metallocarboxypeptidase domains. ACLP is a secreted protein that associates with the extracellular matrix and is essential for abdominal wall development and contributes to dermal wound healing. Because of these developmental and adult phenotypes, we examined the expression of ACLP by immunohistochemistry throughout mouse embryonic development. ACLP was not detected in 7.5 days post-coitum (dpc) embryos, however at 9.5 dpc low levels of expression were detected in the somites and dorsal aorta. Expression was detected in both the yolk sac and embryonic vasculature at 10.5d pc. ACLP expression increased in both large and small blood vessels at 11.5 and 13.5 dpc and intense expression was detected within the vascular smooth muscle layer in 16.5 dpc embryos. At later developmental time points, discrete areas of ACLP expression were detected in the mesenchymal cells in the dermal layer, developing skeletal structures, connective tissue, and in the umbilical ring and vessels. The predominance of ACLP immunoreactivity localized with collagen-rich regions including tendons and basement membranes. Overall, the developmental expression pattern is consistent with a regulatory or structural role in the abdominal wall, vasculature, and dermis.  相似文献   

7.
The Olfactomedin-like 3 (OLFML3) gene has matrix-related function involved in embryonic development. MicroRNA-155 (miR-155), 21- to 23-nucleotides (nt) noncoding RNA, regulated myogenesis by target mRNA. Our LongSAGE analysis suggested that OLFML3 gene was differently expressed during muscle development in pig. In this study, we cloned the porcine OLFML3 gene and detected its tissues distribution in adult Tongcheng pigs and dynamical expression in developmental skeletal muscle (12 prenatal and 10 postnatal stages) from Landrace (lean-type) and Tongcheng (obese-type) pigs. Subsequently, we analyzed the interaction between OLFML3 and miR-155. The OLFML3 was abundantly expressed in liver and pancreas, moderately in lung, small intestine and placenta, and weakly in other tissues and postnatal muscle. There were different dynamical expression patterns between Landrace and Tongcheng pigs during prenatal skeletal muscle development. The OLFML3 was down-regulated (33-50 days post coitus, dpc), subsequently up-regulated (50-70 dpc), and then down-regulated (70-100 dpc) in Landrace pigs, while in Tongcheng pigs, it was down-regulated (33-50 dpc), subsequently up-regulated (50-55 dpc) and then down-regulated (55-100 dpc). There was higher expression in Tongcheng than Landrace in prenatal muscle from 33 to 60 dpc, and opposite situation from 65 to 100 dpc. Dual luciferase assay and real time PCR documented that OLFML3 expression was regulated by miR-155 at mRNA level. Our research indicated that OLFML3 gene may affect prenatal skeletal muscle development and was regulated by miR-155. These finding will help understanding biological function and expression regulation of OLFML3 gene in mammal animals.  相似文献   

8.
Collagen type XV and XVIII are proteoglycans found in the basement membrane zones of endothelial and epithelial cells, and known for their cryptic anti-angiogenic domains named restin and endostatin, respectively. Mutations or deletions of these collagens are associated with eye, muscle and microvessel phenotypes. We now describe a novel role for these collagens, namely a supportive role in leukocyte recruitment. We subjected mice deficient in collagen XV or collagen XVIII, and their compound mutant, as well as the wild-type control mice to bilateral renal ischemia/reperfusion, and evaluated renal function, tubular injury, and neutrophil and macrophage influx at different time points after ischemia/reperfusion. Five days after ischemia/reperfusion, the collagen XV, collagen XVIII and the compound mutant mice showed diminished serum urea levels compared to wild-type mice (all p<0.05). Histology showed reduced tubular damage, and decreased inflammatory cell influx in all mutant mice, which were more pronounced in the compound mutant despite increased expression of MCP-1 and TNF-α in double mutant mice compared to wildtype mice. Both type XV and type XVIII collagen bear glycosaminoglycan side chains and an in vitro approach with recombinant collagen XVIII fragments with variable glycanation indicated a role for these side chains in leukocyte migration. Thus, basement membrane zone collagen/proteoglycan hybrids facilitate leukocyte influx and tubular damage after renal ischemia/reperfusion and might be potential intervention targets for the reduction of inflammation in this condition.  相似文献   

9.
10.
Type XV is a large collagen-proteoglycan found in all human tissues examined. By light microscopy it was localized to most epithelial and all nerve, muscle, fat and endothelial basement membrane zones except for the glomerular capillaries or hepatic/splenic sinusoids. This widespread distribution suggested that type XV may be a discrete structural component that acts to adhere basement membrane to the underlying connective tissue. To address these issues, immunogold ultrastructural analysis of type XV collagen in human kidney, placenta, and colon was conducted. Surprisingly, type XV was found almost exclusively associated with the fibrillar collagen network in very close proximity to the basement membrane. Type XV exhibited a focal appearance directly on the surface of, or extending from, the fibers in a linear or clustered array. The most common single arrangement was a bridge of type XV gold particles linking thick-banded fibers. The function of type XV in this restricted microenvironment is expected to have an intrinsic dependence upon its modification with glycosaminoglycan chains. Present biochemical characterization showed that the type XV core protein in vivo carries chains of chondroitin/dermatan sulfate alone, or chondroitin/dermatan sulfate together with heparan sulfate in a differential ratio. Thus, type XV collagen may serve as a structural organizer to maintain a porous meshwork subjacent to the basement membrane, and in this domain may play a key role in signal transduction pathways.  相似文献   

11.
Type XIII collagen is a type II transmembrane protein found in adhesive structures of mature tissues. We describe here its expression and spatio-temporal localization during mouse fetal development. Type XIII collagen mRNAs were expressed at a constant rate during development, with an increase of expression towards birth. Strong type XIII collagen expression was detected in the central and peripheral nervous systems of the developing mouse fetus in mid-gestation. Cultured primary neurons also expressed this collagen, and it was found to enhance neurite outgrowth. The results suggest that type XIII collagen is a new member among the proteins involved in nervous system development. Strong expression during early development was also detected in the heart, with localization to cell-cell contacts and accentuation in the intercalated discs perinatally. During late fetal development, type XIII collagen was observed in many tissues, including cartilage, bone, skeletal muscle, lung, intestine and skin. Clear developmental shifts in expression suggest a role in endochondral ossification of bone and the branching morphogenesis in the lung. Notable structures lacking type XIII collagen were the endothelia of most blood vessels and the endocardium. Its initially unique staining pattern began to concentrate in the same adhesive structures where it exists in adult tissues, and started to resemble that of the beta1 integrin subunit and vinculin during late intrauterine development and in the perinatal period.  相似文献   

12.
Mutations in the glomulin gene result in dominantly inherited vascular lesions of the skin known as glomuvenous malformations (GVMs). These lesions are histologically distinguished by their distended vein-like channels containing characteristic 'glomus cells', which appear to be incompletely or improperly differentiated vascular smooth muscle cells (VSMCs). The function of glomulin is currently unknown. We studied glomulin expression during murine development (E9.5 days post-coitum until adulthood) by non-radioactive in situ hybridization. Glomulin was first detected at E10.5 dpc in cardiac outflow tracts. Later, it showed strong expression in VSMCs as well as a limited expression in the perichondrium. At E11.5-14.5 dpc glomulin RNA was most abundant in the walls of the large vessels. At E16.5 dpc expression was also detectable in smaller arteries and veins. The high expression of glomulin in murine vasculature suggests an important role for glomulin in blood vessel development and/or maintenance, which is supported by the vascular phenotype seen in GVM patients with mutations in this gene.  相似文献   

13.
Type XV and type XVIII collagens are classified as part of multiplexin collagen superfamily and their C-terminal parts, endostatin and restin, respectively, have been shown to be anti-angiogenic in vivo and in vitro. The alpha1(XV) and alpha1(XVIII) collagen chains are reported to be localized mainly in the basement membrane zone, but their distributions in blood vessels and nonvascular tissues have yet to be thoroughly clarified. In the present study, we raised monoclonal antibodies against synthetic peptides of human alpha1(XV) and alpha1(XVIII) chains and used them for extensive investigation of the distribution of these chains. We came to the conclusion that nonvascular BMs contain mainly one of two types: subepithelial basement membranes that contained type XVIII in general, or skeletal and cardiac muscles that harbored mainly type XV. But basement membranes surrounding smooth muscle cells in vascular tissues contained one or both of them, depending on their locations. Interestingly, continuous capillaries contained both type XV and type XVIII collagens in their basement membranes; however, fenestrated or specialized capillaries such as glomeruli, liver sinusoids, lung alveoli, and splenic sinusoids expressed only type XVIII in their basement membranes, lacking type XV. This observation could imply that different functions of basement membranes in various tissues and organs use different mechanisms for the endogenous control of angiogenesis.  相似文献   

14.
15.
The role of tumor necrosis factor-alpha (TNF-alpha), an important mediator of the inflammatory response after injury, was investigated in regenerating skeletal muscle. The pattern of expression of TNF-alpha during muscle regeneration was examined by immunohistochemistry in tissue sections of crush-injured or transplanted muscle autografts and in primary cultures of adult skeletal muscle. TNF-alpha was highly expressed in injured myofibers, inflammatory cells, endothelial cells, fibroblasts, and mast cells. Myoblasts and myotubes also expressed TNF-alpha in primary muscle cultures and tissue sections. The essential role of TNF-alpha and its homologue lymphotoxin-alpha (LT-alpha) during muscle regeneration was assessed by basic histology in TNF-alpha(-/-) and TNF-alpha(-/-)/LT-alpha(-/-) mice. No difference was apparent in the onset or pattern of muscle regeneration (i.e., inflammatory response, activation and fusion of myoblasts) between the two strains of null mice or between nulls and normal control mice. However, both strains of null mice appeared more prone to bystander damage of host muscle and regeneration distant from the site of injury/transplantation. Although expression of TNF-alpha may play an important role in muscle regeneration, the studies in the null mice show that redundancy within the cytokine system (or some other response) can effectively compensate for the absence of TNF-alpha in vivo.  相似文献   

16.
During the Drosophila oogenic processes, Fat facets (Faf), an ubiquitin-specific protease essential for normal development of oocyte and eye, becomes localized at the posterior pole and is incorporated into the pole cells. This is dependent on Oskar, a key factor for pole cell determination, and suggests a role for Faf in germ cell differentiation and development. Here we show that Usp9x, an X-linked ortholog of Faf, is predominantly expressed in both germ cell and supporting cell lineages during mouse gonadal development in stage- and sex-dependent manners. Usp9x was first detected in PGCs at 10.5 days post coitum (dpc), and thereafter its expression both at mRNA and protein levels was enhanced in PGCs of both sexes at 11.5-13.5 dpc. In testis, Usp9x expression rapidly decreased to an undetectable level by 15.5 dpc and after birth to adult, no expression was found in any spermatogenic cells, except for weak expression in Sertoli cells. In the ovary, Usp9x expression in embryonic oocytes was also reduced at the newborn stage, its expression reappeared in oocytes at secondary follicle stage, and its products were highly accumulated in the cytoplasm of Graaffian follicles in adults. Although follicular epithelial cells also expressed Usp9x at a moderate level during postnatal development, its expression was downregulated from early secondary follicle stage. Thus, the present study is not only the first to demonstrate a conserved expression of fat facets in PGCs between mouse and fly, but also sex- and stage-dependent changes of a specific component of the deubiquitylation system during mammalian gonadal development.  相似文献   

17.
During the Drosophila oogenic processes, Fat facets (Faf), an ubiquitin-specific protease essential for normal development of oocyte and eye, becomes localized at the posterior pole and is incorporated into the pole cells. This is dependent on Oskar, a key factor for pole cell determination, and suggests a role for Faf in germ cell differentiation and development. Here we show that Usp9x, an X-linked ortholog of Faf, is predominantly expressed in both germ cell and supporting cell lineages during mouse gonadal development in stage- and sex-dependent manners. Usp9x was first detected in PGCs at 10.5 days post coitum (dpc), and thereafter its expression both at mRNA and protein levels was enhanced in PGCs of both sexes at 11.5-13.5 dpc. In testis, Usp9x expression rapidly decreased to an undetectable level by 15.5 dpc and after birth to adult, no expression was found in any spermatogenic cells, except for weak expression in Sertoli cells. In the ovary, Usp9x expression in embryonic oocytes was also reduced at the newborn stage, its expression reappeared in oocytes at secondary follicle stage, and its products were highly accumulated in the cytoplasm of Graaffian follicles in adults. Although follicular epithelial cells also expressed Usp9x at a moderate level during postnatal development, its expression was downregulated from early secondary follicle stage. Thus, the present study is not only the first to demonstrate a conserved expression of fat facets in PGCs between mouse and fly, but also sex- and stage-dependent changes of a specific component of the deubiquitylation system during mammalian gonadal development.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号