首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oocytes of the South African clawed toad Xenopus laevis possess in their plasma membrane a so-called stretch-activated cation channel (SAC) which is activated by gently applying positive or negative pressure (stretch) to the membrane patch containing the channels. We show here that this mechanosensitive channel acted as a spontaneously opening, stretch-independent non-selective cation channel (NSCC) in more than half of the oocytes that we investigated. In 55% of cell-attached patches (total number of patches, 58) on 30 oocytes from several different donors, we found NSCC opening events. These currents were increased by elevating the membrane voltage or raising the temperature. NSCC and SAC currents shared some properties regarding the relative conductances of Na+>Li+>Ca2+, gating behaviour and amiloride sensitivity. Stretch-independent currents could be clearly distinguished from stretch induced SAC currents by their voltage and temperature dependence. Open events of NSCC increased strongly when temperature was raised from 21 to 27 degrees C. NSCC currents could be partly inhibited by high concentrations of extracellular Gd3+ and amiloride (100 and 500 microM, respectively). We further show exemplarily that NSCC can seriously hamper investigations when oocytes are used for the expression of foreign ion channels. In particular, NSCC complicated investigations on cation channels with small conductance as we demonstrate for a 4 pS epithelial Na+ channel (ENaC) from guinea pig distal colon. Our studies on NSCCs suggest the involvement of these channels in oocyte temperature response and ion transport regulation. From our results we suggest that NSCC and SAC currents are carried by one protein operating in different modes.  相似文献   

2.
Necrosis is considered as a non-specific form of cell death that induces tissue inflammation and is preceded by cell swelling. This increase in cell volume has been ascribed mainly to defective outward pumping of Na+ caused by metabolic depletion and/or to increased Na+ influx via membrane transporters. A specific mechanism of swelling and necrosis driven by the influx of Na+ through nonselective cation channels has been recently proposed (Barros et al., 2001a). We have characterized further the properties of the nonselective cation channel (NSCC) in HTC cells. The NSCC shows a conductance of approximately 18 pS, is equally permeable to Na+ and K+, impermeant to Ca2+, requires high intracellular Ca2+ as well as low intracellular ATP for activation and is inhibited by flufenamic acid. Hydrogen peroxide induced a significant increase in cell volume that was dependent on external Na+. We propose that the NSCC, which is ubiquitous though largely inactive in healthy cells, becomes activated under severe oxidative stress. The ensuing Na+ influx initiates via positive feedback a series of metabolic and electrolytic disturbances, resulting in cell death by necrosis.  相似文献   

3.
The urinary bladder of euryhaline teleost is an important osmoregulatory organ which absorbs Na+, Cl-, and water from urine. Using patch clamp technique, single stretch-activated channels, which were permeable to K+ and Na+ (PNa/PK approximately 0.75) and had conductances of 55 and 116 pS, were studied. In excised, inside-out patches which were voltage-clamped in the physiological range of membrane potential, the single-channel open probability (Po) was low (approximately 0.02), and increased to a maximum of 0.9 with applied pipette suction. Single-channel conductance also increased with suction. The channels showed adaptation to applied suction and relaxed to a steady-state activity about 20 seconds after application of suction. The Po increased up to 0.9 with strong membrane depolarization (Vm = 0 to +80 mV); however, there was little dependence of Po on membrane potential in the physiological range. The kinetic data suggest that there is one conducting state and at least two non-conducting states of the channel. The open-time constant increased with suction but remained unchanged with membrane potential (Vm = -70 to +60 mV). The mean closed-time of the channel decreased with suction and membrane depolarization. These results demonstrate the presence of a non-selective monovalent cation channel which may be involved in cell volume regulation in the goby urinary bladder. Additionally, this channel may function as an enhancer of Na+ influx and K+ efflux across the bladder cell as part of transepithelial ion transport if it is located in apical membrane.  相似文献   

4.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

5.
The kidney is responsible for the maintenance of an organism's body solute and water balance (i.e., Na+ homeostasis). The distal nephron and the cortical collecting duct (CCD) (an example of a tight epithelium) are important sites of regulatory control over the rate of Na+ reabsorption. The Na+ channel, a specialized protein located in the apical membrane of CCD cells, is the specific site of transepithelial Na+ movement. Na+ entry into the cell across the apical membrane occurs by passive diffusion of Na+ down an electrochemical gradient. We have used the patch-voltage clamp method to examine single-channel conductance events of the amiloride-sensitive apical Na+ channel in A6 cells, a model of CCD. Two types of Na+ channel were identified. One type was characterized by low selectivity (Na+ to K+) and high conductance, the other by high selectivity and low conductance. The type and frequency of channel observed depended on the transporting state of the epithelium. In a tissue with poor transport rates, the low-selectivity type of channel was prevalent (the other type of channel was present, but in a very low density). Therefore, the poorly transporting tissue had an overall low apical Na+ conductance. In a tissue with high transport rates, the highly selective channel appeared to be predominant. In this case the net result was a highly Na+ conductive apical membrane.  相似文献   

6.
Alveolar fluid clearance in the developing and mature lungs is believed to be mediated by some form of epithelial Na channels (ENaC). However, single-channel studies using isolated alveolar type II (ATII) cells have failed to demonstrate consistently the presence of highly selective Na+ channels that would be expected from ENaC expression. We postulated that in vitro culture conditions might be responsible for alterations in the biophysical properties of Na+ conductances observed in cultured ATII cells. When ATII cells were grown on glass plates submerged in media that lacked steroids, the predominant channel was a 21-pS nonselective cation channel (NSC) with a Na+-to-K+ selectivity of 1; however, when grown on permeable supports in the presence of steroids and air interface, the predominant channel was a low-conductance (6.6 +/- 3.4 pS, n = 94), highly Na+-selective channel (HSC) with a P(Na)/P(K) >80 that is inhibited by submicromolar concentrations of amiloride (K(0.5) = 37 nM) and is similar in biophysical properties to ENaC channels described in other epithelia. To establish the relationship of this HSC channel to the cloned ENaC, we employed antisense oligonucleotide methods to inhibit the individual subunit proteins of ENaC (alpha, beta, and gamma) and used patch-clamp techniques to determine the density of this channel in apical membrane patches of ATII cells. Overnight treatment of cells with antisense oligonucleotides to any of the three subunits of ENaC resulted in a significant decrease in the density of HSC channels in the apical membrane cell-attached patches. Taken together, these results show that when grown on permeable supports in the presence of steroids and air interface, the predominant channels expressed in ATII cells have single-channel characteristics resembling channels that are associated with the coexpression of the three cloned ENaC subunits alpha-, beta-, and gamma-ENaC.  相似文献   

7.
We studied whether nerve growth factor (NGF) can affect the membrane potential and conductance of PC12 cells. We demonstrate that NGF depolarizes the membrane of PC12 cells within a minute and by using transfected NIH 3T3-Trk and -p75 cells we show that both the high affinity NGF receptor p140(trk) and the low affinity NGF receptor or p75(NGF) may be involved in the depolarization. Tyrosine kinase inhibitor, K252a, partially inhibited the depolarization, but two agents affecting intracellular calcium movements, Xestospongin C (XeC) and thapsigargin, did not. The early depolarization was eliminated in Na+ free solutions and under this condition, a 'prolonged' (> 2 min) hyperpolarization was observed in PC12 cells in response to NGF. This hyperpolarization was also induced in PC12 cells by epidermal growth factor (EGF). Voltage clamp experiments showed that NGF produced a late (> 2 min) increase in membrane conductance. The Ca2+-dependent BK-type channel blocker, iberiotoxin, and the general Ca2+-dependent K+ channel blocker, TEA, attenuated or eliminated the hyperpolarization produced by NGF in sodium free media. Under pretreatment with the non-selective cation channel blockers La3+ and Gd3+, NGF hyperpolarized the membrane of PC12 cells. These results suggest that three different currents are implicated in rapid NGF-induced membrane voltage changes, namely an acutely activated Na+ current, Ca2+-dependent potassium currents and non-selective cation currents.  相似文献   

8.
A cation selective channel was identified in the apical membrane of fetal rat (Wistar) alveolar type II epithelium using the patch clamp technique. The single channel conductance was 23 +/- 1.2 pS (n = 16) with symmetrical NaCl (140 mM) solution in the bath and pipette. The channel was highly permeable to Na+ and K+ (PNa/PK = 0.9) but essentially impermeant to chloride and gluconate. Membrane potential did not influence open state probability when measured in a high Ca2+ (1.5 mM) bath. The channel reversibly inactivated when the bath was exchanged with a Ca(2+)-free (less than 10(-9) M) solution. The Na+ channel blocker amiloride (10(-6) M) applied to the extracellular side of the membrane reduced P(open) relative to control patches; P(control) = 0.57 +/- 0.11 (n = 5), P(amiloride) = 0.09 +/- 0.07 (n = 4, p less than 0.01), however, amiloride did not significantly influence channel conductance (g); g(control) 19 +/- 0.9 pS (n = 5), 18 +/- 3.0 pS (n = 4). More than one current level was observed in 42% (16/38) of active patches; multiple current levels (ranging from 2 to 6) were of equal amplitude suggesting the presence of multiple channels or subconductance states. Channel activity was also evident in cell attached patches. Since monolayers of these cells absorb Na+ via an amiloride sensitive transport mechanism we speculate that this amiloride sensitive cation selective channel is a potential apical pathway for electrogenic Na+ transport in the alveolar region of the lung.  相似文献   

9.
Ion channels in human endothelial cells.   总被引:4,自引:0,他引:4  
Ion channels were studied in human endothelial cells from umbilical cord by the patch clamp technique in the cell attached mode. Four different types of ion channels were recorded: i) potassium channel current that rectifies at positive potentials in symmetrical potassium solutions (inward rectifier); ii) low-conductance non-selective cation channel with a permeability ratio K:Na:Ca = 1:0.9:0.2; iii) high-conductance cation-selective channel that is about 100 times more permeable for calcium than for sodium or potassium; iv) high-conductance potassium channel with a permeability ratio K:Na = 1:0.05. The extrapolated reversal potential of the inwardly rectifying current was near to the potassium equilibrium potential. The slope conductance decreased from 27 pS in isotonic KCl solution to 7 pS with 5.4 mmol/l KCl and 140 mmol/l NaCl in the pipette but 140 mmol/l KCl in the bath. The low-conductance non-selective cation channel showed a single-channel conductance of 26 pS with 140 mmol/l Na outside, 28 pS with 140 mmol/l K outside, and rectified in inward direction in the presence of Ca (60 mmol/l Ca, 70 mmol/l Na, 2.7 mmol/l K in the pipette) at negative potentials. The current could be observed with either chloride or aspartate as anion. The high-conductance non-selective channel did not discriminate between Na and K. The single-channel conductance was about 50 pS. The extrapolated reversal potential was more positive than +40 mV (140 K or 140 Na with 5 Ca outside). Both the 26 and 50 pS channel showed a run-down, and they rapidly disappeared in excised patches. The high-conductance potassium channel with a single-channel conductance of 170 pS was observed only rarely. It reversed near the expected potassium equilibrium potential. The 26 pS channel could be stimulated with histamine and thrombin from outside in the cell-attached mode. Both the 26 pS as well as the 50 pS channel can mediate calcium flux into the endothelial cell.  相似文献   

10.
Cortical thick ascending limbs of Henle's loop (cTAL) were microdissected from rabbit kidneys and cultured in a hormonally-defined medium. The cultured cells grew as a monolayer and retained the morphological and biochemical characteristics of the original tubule. Cyclic AMP production of the cultured cells was increased by human calcitonin (x13) and parathyroid hormone (x2). The cultured epithelial developed a transepithelial potential of 4.1 +/- 1.3 mV that was orientated positively towards the apical compartment. The basolateral membrane of the cells exhibited a chloride conductance sensitive to diphenylamine 2-carboxylate (DPC) and the apical membrane a barium-sensitive K+ permeability. Patch clamp analysis conducted on the apical membrane of the cells revealed the presence of three types of ionic channel. The first is a large conductance Ca(2+)-activated K+ channel (95 pS). The second K+ channel has a much smaller conductance (18.3 pS) and is insensitive to Ca2+. It may represent the conductive pathway for K+ recycling into the lumen in the original tubule. The last channel is cation selective, does not discriminate between Na+ and K+ and was found to have a conductance of 20.5 pS. Channel activity required a high cytoplasmic calcium concentration (1 mM), and was blocked by ATP (10 microM) applied on its cytoplasmic face.  相似文献   

11.
Calcium is a critical structural and regulatory nutrient in plants. However, mechanisms of its uptake by root cells are poorly understood. We have found that Ca2+ influx in Arabidopsis root epidermal protoplasts is mediated by voltage-independent rapidly activating Ca2+-permeable non-selective cation channels (NSCCs). NSCCs showed the following permeability (P) sequence: PCa (1.00) = PBa (0.93) > PZn (0.51), PCa/PNa = 0.19, PCa/PK = 0.14. They were inhibited by quinine, Gd3+, La3+ and the His modifier diethylpyrocarbonate, but not by the Ca2+ or K+ channel antagonists, verapamil and tetraethylammonium (TEA+). Single channel conductance measured in 20 mm external Ca2+ was 5.9 pS. Calcium-permeable NSCCs co-existed with hyperpolarisation-activated Ca2+ channels (HACCs), which activated 40-60 min after forming the whole-cell configuration. HACCs activated at voltages <-130 to -150 mV, showed slow activation kinetics and were regulated by cytosolic Ca2+ ([Ca2+]cyt). Using aequorin-expressing plants, a linear relationship between membrane potential (Vm) and resting [Ca2+]cyt was observed, indicating the involvement of NSCCs. Intact root 45Ca2+ influx was reduced by Gd3+ (NSCC blocker) but was verapamil and TEA+ insensitive. In the root elongation zone, both root net Ca2+ influx (measured by Ca2+-selective vibrating microelectrode) and NSCC activity were increased compared to the mature epidermis, suggesting the involvement of NSCC in growth. A Ca2+ acquisition system based on NSCC and HACC co-existence is proposed. In mature epidermal cells, NSCC-mediated Ca2+ influx dominates whereas in specialised root cells (root hairs and elongation zone cells) where elevated [Ca2+]cyt activates HACCs, HACC-mediated Ca2+ influx predominates.  相似文献   

12.
Non-selective cation channels have been described in the basolateral membrane of the renal tubule, but little is known about functional channels on the apical side. Apical membranes of microdissected fragments of mouse cortical thick ascending limbs were searched for ion channels using the cell-free configuration of the patch-clamp technique. A cation channel with a linear current-voltage relationship (19pS) that was permeable both to monovalent cations [P(NH4)(1.7)>P(Na) (1.0)=P(K) (1.0)] and to Ca(2+) (P(Ca)/P(Na)≈0.3) was detected. Unlike the basolateral TRPM4 Ca(2+)-impermeable non-selective cation channel, this non-selective cation channel was insensitive to internal Ca(2+), pH and ATP. The channel was already active after patch excision, and its activity increased after reduced pressure was applied via the pipette. External gadolinium (10(-5)M) decreased the channel-open probability by 70% in outside-out patches, whereas external amiloride (10(-4)M) had no effect. Internal flufenamic acid (10(-4)M) inhibited the channel in inside-out patches. Its properties suggest that the current might be supported by the TRPM7 protein that is expressed in the loop of Henle. The conduction properties of the channel suggest that it could be involved in Ca(2+) signaling.  相似文献   

13.
Using the patch-clamp technique, a non-selective voltage-activated Na+ and K+ channel in the human red blood cell membrane was found. The channel operates only at positive membrane potentials from about +30 mV (inside positive) onwards. For sodium and potassium ions, similar conductances of about 21 pS were determined. Together with the recently described K+(Na+)/H+ exchanger, this channel is responsible for the increase of residual K+ and Na+ fluxes across the human red blood cell membrane when the cells are suspended in low ionic strength medium.  相似文献   

14.
The Arg615 to Cys615 mutation of the sarcoplasmic reticulum (SR) Ca2+ release channel of malignant hyperthermia susceptible (MHS) pigs results in a decreased sensitivity of the channel to inhibitory Ca2+ concentrations. To investigate whether this mutation also affects the ion selectivity filter of the channel, the monovalent cation conductances and ion permeability ratios of single Ca2+ release channels incorporated into planar lipid bilayers were compared. Monovalent cation conductances in symmetrical solutions were: Li+, 183 pS +/- 3 (n = 21); Na+, 474 pS +/- 6 (n = 29); K+, 771 pS +/- 7 (n = 29); Rb+, 502 pS +/- 10 (n = 22); and Cs+, 527 pS +/- 5 (n = 16). The single-channel conductances of MHS and normal Ca2+ release channel were not significantly different for any of the monovalent cations tested. Permeability ratios measured under biionic conditions had the permeability sequence Ca2+ >> Li+ > Na+ > K+ > or Rb+ > Cs+, with no significant difference noted between MHS and normal channels. This systematic examination of the conduction properties of the pig skeletal muscle Ca2+ release channel indicated a higher Ca2+ selectivity (PCa2+:Pk+ approximately 15.5) than the sixfold Ca2+ selectivity previously reported for rabbit skeletal (Smith et al., 1988) or sheep cardiac muscle (Tinker et al., 1992) Ca2+ release channels. These results also indicate that although Ca2+ regulation of Ca2+ release channel activity is altered, the Arg615 to Cys615 mutation of the porcine Ca2+ release channel does not affect the conductance or ion selectivity properties of the channel.  相似文献   

15.
As described by others, an extracellular calcium-sensitive non-selective cation channel ([Ca2+]o-sensitive NSCC) of central neurons opens when extracellular calcium level decreases. An other non-selective current is activated by rising intracellular calcium ([Ca2+] i ). The [Ca2+]o-sensitive NSCC is not dependent on voltage and while it is permeable by monovalent cations, it is blocked by divalent cations. We tested the hypothesis that activation of this channel can promote seizures and spreading depression (SD). We used a computer model of a neuron surrounded by interstitial space and enveloped in a glia-endothelial “buffer” system. Na+, K+, Ca2+ and Cl concentrations, ion fluxes and osmotically driven volume changes were computed. Conventional ion channels and the NSCC were incorporated in the neuron membrane. Activation of NSCC conductance caused the appearance of paroxysmal afterdischarges (ADs) at parameter settings that did not produce AD in the absence of NSCC. The duration of the AD depended on the amplitude of the NSCC. Similarly, NSCC also enabled the generation of SD. We conclude that NSCC can contribute to the generation of epileptiform events and to spreading depression.  相似文献   

16.
Vacuolar ion channel of the yeast, Saccharomyces cerevisiae   总被引:6,自引:0,他引:6  
Ionic flux is most likely to regulate the chemiosmotic potential differences across vacuolysosomal membranes in animal, plant, and fungal cells. We found a membrane potential-dependent cation channel in yeast vacuolar membrane and characterized its several features by an electrophysiological method using artificial planar bilayer membranes incorporated with isolated yeast vacuolar membrane vesicles. This ion channel conducts K+ (single channel conductance, 435 pS in 0.3 M KCl) and several other monovalent cations (Cs+, Na+, and Li+) with broad selectivity, but does not conduct Cl-. The opening of this channel is regulated by the membrane potential and the presence of calcium ion on the cytoplasmic face. These characteristics suggested that the vacuolar cation channel functions as one of essential components for formation and regulation of the chemical and electrical potential differences across the vacuolar membrane.  相似文献   

17.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

18.
We report here the first evidence in intact epithelial cells of unit conductance events from amiloride-sensitive Na+ channels. The events were observed when patch-clamp recordings were made from the apical surface of cultured epithelial kidney cells (A6). Two types of channels were observed: one with a high selectivity to Na+ and one with relatively low selectivity. The characteristics of the low-selectivity channel are as follows: single-channel conductance ranged between 7 and 10 pS (mean = 8.4 +/- 1.3), the current-voltage (I-V) relationship displayed little if any nonlinearity over a range of +/- 80 mV (with respect to the patch pipette) and the channel Na+/K+ selectivity was approximately 3-4:1. Amiloride, a cationic blocker of the channel, reduced channel mean open time and increased channel mean closed times as the voltage of the cell interior was made more negative. Amiloride induced channel flickering at increased negative potentials (intracellular potential with respect to the patch) but did not alter the single-channel conductance or the I-V relationship from that observed in control patches. The characteristics of the high-selectivity channel are: a single-channel conductance of 1-3 pS (mean = 2.8 +/- 1.2), the current-voltage relationship is markedly nonlinear with a Na+/K+ selectivity greater than 20:1. The mean open and closed times for the two types of channels are quite different, the high-selectivity channel being open only about 10% of the time while the low-selectivity channel is open about 30% of the time.  相似文献   

19.
High potassium diets lead to an inverse regulation of sodium and magnesium absorption in ruminants, suggesting some form of cross talk. Previous Ussing chamber experiments have demonstrated a divalent sensitive Na(+) conductance in the apical membrane of ruminal epithelium. Using patch-clamped ruminal epithelial cells, we could observe a divalent sensitive, nonselective cation conductance (NSCC) with K(+) permeability > Cs(+) permeability > Na(+) permeability. Conductance increased and rectification decreased when either Mg(2+) or both Ca(2+) and Mg(2+) were removed from the internal or external solution or both. The conductance could be blocked by Ba(2+), but not by tetraethylammonium (TEA). Subsequently, we studied this conductance measured as short-circuit current (I(sc)) in Ussing chambers. Forskolin, IBMX, and theophylline are known to block both I(sc) and Na transport across ruminal epithelium in the presence of divalent cations. When the NSCC was stimulated by removing mucosal calcium, an initial decrease in I(sc) was followed by a subsequent increase. The cAMP-mediated increase in I(sc) was reduced by low serosal Na(+) and serosal addition of imipramine or serosal amiloride and depended on the availability of mucosal magnesium. Luminal amiloride had no effect. Flux studies showed that low serosal Na(+) reduced (28)Mg fluxes from mucosal to serosal. The data suggest that cAMP stimulates basolateral Na(+)/Mg(2+) exchange, reducing cytosolic Mg. This increases sodium uptake through a magnesium-sensitive NSCC in the apical membrane. Likewise, the reduction in magnesium uptake that follows ingestion of high potassium fodder may facilitate sodium absorption, as observed in studies of ruminal osmoregulation. Possibly, grass tetany (hypomagnesemia) is a side effect of this useful mechanism.  相似文献   

20.
We have generated two site-directed mutants, K504E and K515E, in the alpha subunit of an amiloride-sensitive bovine epithelial Na+ channel, alpha bENaC. The region in which these mutations lie is in the large extracellular loop immediately before the second membrane-spanning domain (M2) of the protein. We have found that when membrane vesicles prepared from Xenopus oocytes expressing either K504E or K515E alpha bENaC are incorporated into planar lipid bilayers, the gating pattern, cation selectivity, and amiloride sensitivity of the resultant channel are all altered as compared to the wild-type protein. The mutated channels exhibit either a reduction or a complete lack of its characteristic burst-type behavior, significantly reduced Na+:K+ selectivity, and an approximately 10-fold decrease in the apparent inhibitory equilibrium dissociation constant (Ki) for amiloride. Single-channel conductance for Na+ was not affected by either mutation. On the other hand, both K504E and K515E alpha bENaC mutants were significantly more permeable to K+, as compared to wild type. These observations identify a lysine-rich region between amino acid residues 495 and 516 of alpha bENaC as being important to the regulation of fundamental channel properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号