首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adrenomedullin (AM) has vasodilator and diuretic actions, similarly to natriuretic peptides. AM receptor complexes are composed of calcitonin receptor-like receptor (CRLR) and receptor-activity modifying protein-2 (RAMP2), or CRLR and RAMP3. We aimed to know whether gene expression of AM and AM receptor complexes are regulated in kidneys under pathophysiological conditions. Expression of AM, RAMP2, RAMP3 and CRLR mRNA was studied in the remnant kidney of rats with renal mass ablation using competitive quantitative RT-PCR techniques. Partial cloning was performed to determine the rat RAMP3 nucleotide sequence. In normal rat kidneys, expression levels of RAMP2, RAMP3, CRLR and AM mRNAs were 26.5 +/- 1.9 mmol/mole of GAPDH, 7.7 +/- 0.9 mmol/mole of GAPDH, 3.6 +/- 0.2 mmol/mole of GAPDH and 0.57 +/- 0.03 mmol/mole of GAPDH (mean +/- SE, n = 6), respectively. RAMP3 mRNA levels decreased significantly to about 50% and about 70% of control (sham-operated rats) 4 days and 14 days after 5/6 nephrectomy, respectively. CRLR mRNA levels also decreased significantly to about 30% and about 43% of control. Sodium intake restriction had no significant effects on the RAMP3 and CRLR gene expression. On the other hand, RAMP2 mRNA expression in the kidney was suppressed by sodium intake restriction regardless of nephrectomy, while RAMP2 levels in the remnant kidney were not significantly changed by 5/6 nephrectomy. Neither 5/6 nephrectomy or sodium intake restriction had any significant effects on the AM gene expression in the kidney. The present study showed that expression of mRNAs encoding AM, RAMP2, RAMP3 and CRLR were differentially regulated in remnant kidneys of rats with renal mass ablation.  相似文献   

3.
Pan CS  Jin SJ  Cao CQ  Zhao J  Zhang J  Wang X  Tang CS  Qi YF 《Peptides》2007,28(4):900-909
In this work we aimed to observe (1) the changes in adrenomedullin (AM) and its receptor system - calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) - in myocardial ischemic injury and (2) the response of injuried myocardia to AM and the phosphorylation of Akt to illustrate the protective mechanism of AM in ischemic myocardia. Male SD rats were subcutaneously injected with isoproterenol (ISO) to induce myocardial ischemia. The mRNA levels of AM, CRLR, RAMP1, RAMP2 and RAMP3 were determined by RT-PCR. Protein levels of Akt, phosphor-Akt, CRLR, RAMP1, RAMP2 and RAMP3 were assayed by Western blot. Results showed that, compared with that of the controls, ISO-treated rats showed lower cardiac function and myocardial injury. The mRNA relative amount of AM, CRLR, RAMP1, RAMP2 and RAMP3 in the myocardia of ISO-treated rats was increased. The elevated mRNA levels of CRLR, RAMP1, RAMP2 and RAMP3 were positively correlated with AM content in injured myocardia. The protein levels of CRLR, RAMP1, RAMP2 and RAMP3 in injured myocardia were increased compared with that of control myocardia. AM-stimulated cAMP generation in myocardia was elevated in the ISO group, and was antagonized by AM(22-52) and CGRP(8-37). Western blot analyses revealed that AM significantly enhanced Akt phosphorylation in injured myocardia, which was blocked by pretreatment with AM(22-52) or CGRP(8-37). Ischemia-injured myocardia hyper-expressed AM and its receptors - CRLR, RAMP1, RAMP2 and RAMP3 - and the response of ischemic myocardia to AM was potentiated, and the level of Akt phosphorylation was also increased, which suggests that changes in cardiac AM/AM receptor might play an important role in the pathogenesis of myocardial ischemic injury.  相似文献   

4.
5.
6.
Left ventricular (LV) adrenomedullin (AM) gene expression differs between pressure overload (POL) and volume overload (VOL) and angiotensin II could be a critical stimulator of AM gene expression in POL and VOL models. Calcitonin receptor-like receptor (CRLR) co-expressed with receptor activity modifying protein 2 (RAMP2) or RAMP3 functions as an AM receptor. Levels of CRLR, RAMP2 and RAMP3 mRNA that were significantly increased within 24 h returned to the basal level at 5 days after the imposition of POL in the present study. In contrast, mRNA levels of CRLR and RAMP2 gradually increased over 6 weeks after the imposition of VOL. Continuous infusion of angiotensin II stimulated LV AM gene and AM receptor gene expression independently of LV peak-systolic and LV end-diastolic pressure. The gene expression of LV AM receptors increased in different types of cardiac overload. The present study revealed an intimate association between the AM signaling system and angiotensin II.  相似文献   

7.
Go AG  Chow KH  Hwang IS  Tang F 《Peptides》2007,28(4):920-927
Male Sprague-Dawley rats were subcutaneously injected with 2.5mg/kg phenylephrine or 2.5mg/kg isoproterenol or both (2.5mg/kg for each drug) for 4 days, twice a day. Samples of scapular brown adipose tissue (BAT) and epididymal white adipose tissue (WAT) were collected for the measurement of adrenomedullin (AM) levels and the gene expression of preproAM, calcitonin receptor like receptor (CRLR) and its activity modifying proteins (RAMPs) by radioimmunoassay and RT-PCR. These values were compared with those in the rats that received 0.9% saline. The gene expression of AM and AM receptor components in BAT are much less than that in epididymal WAT. In BAT there were an increase in AM peptide level after a combined treatment of alpha(1) and beta adrenoceptor agonists and increases in preproAM mRNA levels for rats treated with alpha(1) and beta receptor agonists alone or in combination. Both CRLR and RAMP2 mRNA levels of alphabeta group were increased significantly. In WAT, AM peptide level, RAMP1 and RAMP2 mRNA expression levels were augmented in the alpha group while CRLR mRNA level was enhanced in the beta group. The levels of AM, its receptor and RAMPs are much less in BAT than in WAT but adrenergic stimulation has a greater effect on the AM and its receptor components in BAT than those in WAT. AM stimulates lipolysis and increases the level of uncoupling protein-1 (UCP-1) in BAT. It may therefore enhance thermogenesis by increasing the availability of free fatty acids substrate as well as the UCP-1 level on the mitochondrial membrane.  相似文献   

8.
9.
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), two potent smooth-muscle relaxants, have been shown to cause uterine relaxation. Both CGRP- and AM-binding sites in the uterus increase during pregnancy and decrease at labor and postpartum. These changes in binding sites appear to be related to the changes in calcitonin receptor-like receptor (CRLR), receptor activity-modified protein 1 (RAMP1), RAMP2, and RAMP3 mRNA levels. It is not clear, however, whether the changes in the receptor components occur in the myometrial cells and whether the steroid hormones can directly alter these receptor components in the muscle cells. In addition, the mechanism of CGRP and AM signaling in the rat myometrium is not well understood. Therefore, we examined the mRNA expression of CGRP- and AM-receptor components, G protein Galphas, CGRP, and AM stimulation of cAMP and cGMP, and the effects of progesterone on these parameters in the Eker rat uterine myometrial smooth-muscle cell line (ELT3). ELT3 cells expressed CGRP- and AM-receptor components CRLR, RAMP1, RAMP2, and RAMP3. Expression of CRLR and RAMP1 mRNA increased with progesterone treatment and decreased with estradiol-17beta treatment. However, RAMP2 and RAMP3 mRNA expressions were unaltered by both progesterone and estradiol. Progesterone increased (P<0.05) Galphas expression and augmented CGRP- and AM-induced increases in cAMP levels. In uterine smooth-muscle cells, the antagonist to Galphas protein NF449 decreased basal as well as CGRP- and AM-stimulated cAMP levels. None of the cell treatments affected cyclic GMP production. Our results suggest that the progesterone-stimulated increases in CGRP and AM receptors, Galphas protein levels, and cAMP generation in the myometrial cells may be responsible for increased uterine relaxation sensitivity to CGRP and AM during pregnancy.  相似文献   

10.
Role of adrenomedullin and its receptor system in renal pathophysiology.   总被引:5,自引:0,他引:5  
M Mukoyama  A Sugawara  T Nagae  K Mori  H Murabe  H Itoh  I Tanaka  K Nakao 《Peptides》2001,22(11):1925-1931
Adrenomedullin (AM), a potent vasorelaxing, natriuretic and cell growth-modulating peptide, is thought to act as an autocrine/paracrine regulator in renal glomeruli and tubules. AM receptors comprise the calcitonin receptor-like receptor (CRLR) and a family of receptor-activity-modifying proteins (RAMPs 1-3); however, the pathophysiological role of AM and its receptor system in the kidney remains to be clarified. We examined the regulation of their expression in a rat model of renal injury and found that RAMP1, RAMP2 and CRLR expressions were markedly upregulated upon induction of fibrosis during obstructive nephropathy. Since AM exerts potent antiproliferative effects in various cell types, upregulation of the AM receptor system may play important roles in modulating the progression of renal diseases.  相似文献   

11.
This study was undertaken to determine AM expression in carbon tetrachloride (CCl4)-induced liver cirrhosis developed with peritoneal ascites. Sprague-Dawley rats received subcutaneous injections of CCl4 twice weekly in olive oil (1:1, 0.3 ml per kg body weight) for 6 or 12 weeks until ascites developed, or saline in olive oil as control. At 6 weeks, fibrosis developed and at 12 weeks cirrhosis developed with ascites formation. At both 6 and 12 weeks, increases in plasma renin and AM were evident, as was the gene expression of AM. At 12 weeks after CCl4 injection, the gene expression of calcitonin-like-receptor (CRLR) and receptor activity modifying proteins (RAMP1, RAMP2 and RAMP3) were all elevated when compared to the control. The results suggest that liver cirrhosis increases mRNA expressions of AM, CRLR and RAMP1, RAMP2 and RAMP3 and that the increase in AM gene expression precedes the development of cirrhosis. The increase in AM synthesis as reflected by an increase in AM gene expression, together with a lack of increase in AM peptide at both 6 and 12 weeks may suggest an elevation of AM release. Given the potent vasodilatory action of AM, the increase in the synthesis and release of AM in the cirrhotic liver may also contribute to peripheral vasodilatation in liver cirrhosis.  相似文献   

12.
Both adrenomedullin (AM) and angiotensin II (Ang II) are locally-acting hormones in the cardiac ventricles. Previously we reported that AM inhibits Ang II-induced hypertrophy of cultured rat neonatal cardiomyocytes. In this study, we examined whether Ang II affects the gene expression of the AM receptor components of calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying protein (RAMP) in rat cardiomyocytes. The mRNA levels of RAMP1 and RAMP3 were significantly elevated following 24-h treatment with Ang II without a change of those of RAMP2 and CRLR. AM increased the intracellular cAMP level and the cAMP accumulation by AM was significantly amplified by the 24-h preincubation with Ang II. The effects of Ang II on RAMP1 and RAMP3 expression were abolished by an Ang II type 1 (AT1) receptor antagonist, but not by an AT2 receptor antagonist. Thus, Ang II modulates gene expression of the AM receptor components via AT1 receptor, suggesting alteration of AM actions by Ang II in cultured rat cardiomyocytes.  相似文献   

13.
Epicardial white adipose tissue (eWAT) is in close contact with coronary vessels and therefore could alter coronary homeostasis. Adrenomedullin (AM) is a potent vasodilatator and antioxidative peptide which has been shown to play a cytoprotective role in experimental models of acute myocardial infarction. We studied, using immunohistochemistry and qRT-PCR, the expression of AM and its receptors calcitonin receptor-like receptor (CRLR), and receptor activity-modifying protein (RAMP)2 and -3 in paired biopsies of subcutaneous WAT (sWAT) and eWAT obtained from patients with coronary artery disease (CAD) or without CAD (NCAD). In eWAT obtained from NCAD or CAD patients, immunoreactivity for AM, CRLR, and RAMP2 and -3 was detected in blood vessel walls and isolated stromal cells close to adipocytes. Some of the AM positive stromal cells colocalized CD68 immunoreactivity. eWAT from CAD patients showed increased AM immunoreactivity and AM gene expression. CRLR mRNA levels were comparable in sWAT of both groups and decreased by 40-50% in eWAT, irrespectively of the coronary status. RAMP2 mRNA concentrations did not change while RAMP3 mRNA levels increased in sWAT from CAD patients. There was a positive linear relationship between eWAT 11beta-hydroxysteroid dehydrogenase type 1 mRNA (11beta-HSD-1, the enzyme that converts inactive to active glucocorticoids) and AM mRNA. In conclusion, we demonstrate that AM and its receptors are expressed in eWAT. Our data suggest that eWAT AM, which could originate from macrophages, is related to 11beta-HSD-1 expression. AM synthesis, which is increased in eWAT during chronic CAD in humans, can play a cardioprotective role.  相似文献   

14.
Adrenomedullin (AM) is a potent vasorelaxing peptide originally isolated pheochromocytoma. Recently, a family of receptor-activity-modifying proteins (RAMPs 1-3) were identified in humans. Associated with the calcitonin receptor-like receptor (CRLR), RAMP2 or RAMP3 may function as the AM receptor. Here we cloned rat RAMP family, analyzed their distribution in rat tissues, and examined regulation of their expression in the kidney using an obstructive nephropathy model. Northern blot analyses revealed that the RAMP family genes are expressed in various tissues with different tissue specificity; RAMP1 is abundantly expressed in the brain, fat, thymus, and spleen, RAMP2 in the lung, spleen, fat, and aorta, while RAMP3 is most abundant in the kidney and lung. After ureteral obstruction, RAMP1, RAMP2, and CRLR gene expressions in the obstructed kidney were markedly upregulated, whereas RAMP3 expression was unchanged. Thus, RAMPs are regulated differently in obstructive nephropathy, suggesting their distinct roles in renal pathophysiology.  相似文献   

15.
Both endothelin (ET) and adrenomedullin (AM), produced by cardiac myocytes, are thought to be locally-acting hormones in the heart. Recently, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMPs) have been shown to function together to serve as AM receptors stimulating cAMP production. In the present study, we examined the effects of ET on AM secretion, intracellular cAMP response to AM, and gene expressions of CRLR and RAMPs in cultured cardiac myocytes. Synthetic ET-1 dose-dependently increased AM secretion from the cardiomyocytes. AM increased the intracellular cAMP level in a dose-dependent manner and the cAMP accumulation by AM was significantly amplified by 24 h preincubation with ET-1. 10 nmol/L ET-1 significantly increased the CRLR mRNA level without any effect on RAMP1 mRNA. 1 micromol/L ET-1 significantly reduced the RAMP2 mRNA level, but ET-1 dose-dependently increased the RAMP3 mRNA level in the cardiac myocytes. These findings suggest that ET-1 not only stimulates AM secretion, but also modulates intracellular cAMP responses to AM probably by altering the expressions of CRLR and RAMPs in rat cardiomyocytes.  相似文献   

16.
Pan CS  Qi YF  Wu SY  Jiang W  Li GZ  Tang CS 《Peptides》2004,25(4):601-608
Adrenomedullin (ADM) is a potent vasodilatory peptide which regulates blood pressure, cell growth and bone formation. Our work was aimed to explore the production of ADM, changes and pathophysiological significance of ADM mRNA and ADM receptor components--calcitonin receptor like receptor (CRLR) and receptor activity modifying proteins (RAMPs) mRNA in calcified myocardium and aorta of rats induced by Vitamin D3 plus nicotine. Contents of ADM in plasma, myocardium and aorta were measured by radioimmunoassay (RIA). The amount of ADM, CRLR and RAMPs mRNA was determined by semi-quantitative RT-PCR. The calcium content and alkaline phosphatase activity in myocardium and aorta of rats were measured. The results showed that the contents of calcium in calcified myocardium and aorta were increased by 3.5- and 6-fold (all P < 0.01), respectively, and alkaline phosphatases activity in calcified myocardium and aorta were increased by 66.5 and 82.7% (all P < 0.01 ), respectively, compared with control. Contents of ADM in plasma, myocardium and aorta were increased by 58% (P < 0.01), 14.3% (P < 0.01) and 27.8% P < 0.05). Furthermore, it was found that the amount of ADM, CRLR and RAMP2 mRNA in calcified myocardium was elevated by 90.6, 157.5 and 119.6% (all P < 0.01), RAMP3 mRNA was decreased by 14.1% (P < 0.01), respectively, compared with control. The amount of ADM, CRLR, RAMP2 and RAMP3 mRNA in calcified aorta was elevated by 37.7% (P < 0.01), 41.4% (P < 0.01), 60.1% (P < 0.05) and 13% P < 0.01), respectively, compared with control. The elevated level of CRLR and RAMP2 mRNA were in positive correlation with that of ADM mRNA (r = 0.992 and 0.882, respectively, P < 0.01) in calcified myocardium. The elevated level of CRLR and RAMP3 mRNA were also in positive correlation with that of ADM mRNA (r = 0.727, P < 0.05 and 0.816, P < 0.01, respectively) in calcified aorta. These results demonstrated that calcified myocardium and aorta generated an increased amount of ADM, up-regulated gene expressions of ADM, CRLR and RAMP2 mRNA. While the alteration of RAMP3 mRNA in calcified myocardium and aorta was different. These suggested that ADM and its receptor system might involve in the regulation of calcification in heart and aorta.  相似文献   

17.
Receptor activity modifying proteins RAMP1, RAMP2, and RAMP3 are responsible for defining affinity to ligands of the calcitonin receptor-like receptor (CRLR). It has also been proposed that receptor activity-modifying proteins (RAMP) are molecular chaperones required for CRLR transport to the cell surface. Here, we have studied the respective roles of CRLR and RAMP in transporting CRLR/RAMP heterodimers to the plasma membrane by using a highly specific binding assay that allows quantitative detection of cell surface-expressed CRLR or RAMP in the Xenopus oocytes expression system. We show that: (i) heterodimer assembly is not a prerequisite for efficient cell surface expression of CRLR, (ii) N-glycosylated RAMP2 and RAMP3 are expressed at the cell surface and their transport to the plasma membrane requires N-glycans, (iii) RAMP1 is not N-glycosylated and is transported to the plasma membrane only upon formation of heterodimers with CRLR, and (iv) introduction of N-glycosylation sites in the RAMP1 sequence (D58N/G60S, Y71N, and K103N/P105S) allows cell surface expression of these mutants at levels similar to that of wild-type RAMP1 co-expressed with CRLR. Our data argue against a chaperone function for RAMP and identify the role of N-glycosylation in targeting these molecules to the cell surface.  相似文献   

18.
采用逆转录-聚合酶链式反应检测了慢性足底电击结合噪声应激致高血压大鼠下丘脑、延髓、中脑、垂体和肾上腺等组织中编码肾上腺髓质素的肾上腺髓质素前肽原(preproadrenomedullin,ppADM)基因以及ADM的特异性受体组件降钙素受体样受体(calcitonin-receptor-like receptor,CRLR)和受体活性调节蛋白2和3(receptor-activty-modifying proteins,RAMP2和RAMP3)表达的变化.我们观察到:与对照组相比,以3-磷酸甘油醛脱氢酶作为内参照,15 d足底电击结合噪声应激引起下丘脑、垂体和肾上腺中ppADM mRNA表达上调,而在延髓和中脑表达明显下调(P<0.01或P<0.05);CRLR基因表达量正常时在下丘脑相对较高,应激15 d后CRLR表达在延髓、中脑和下丘脑下调(P<0.01或P<0.05),而在垂体和肾上腺的表达无明显变化;应激后RAMP2基因在延髓和下丘脑表达上调,而在肾上腺表达显著下调(P<0.01),其他部位无明显变化;RAMP3基因在对照组大鼠的中脑和下丘脑表达较高,在应激性高血压大鼠的下丘脑和垂体表达上调(P<0.01或P<0.05),而在中脑和肾上腺表达下调(P<0.05),在延髓中的表达变化无统计学差异.上述结果提示:慢性足底电击结合噪声应激引起明显的中枢和下丘脑-垂体-肾上腺轴ADM及其受体组件CRLR/RAMP2或CRLR/RAMP3基因的表达变化.但慢性应激后中枢源性ADM及其受体的表达变化对应激和血压的调节以及在应激致高血压中的确切作用及机制尚待进一步研究.  相似文献   

19.
Li X  Li L  Shen LL  Qian Y  Cao YX  Zhu DN 《生理学报》2004,56(6):723-729
采用逆转录- 聚合酶链式反应检测了慢性足底电击结合噪声应激致高血压大鼠下丘脑、延髓、中脑、垂体和肾上腺等组织中编码肾上腺髓质素的肾上腺髓质素前肽原(preproadrenomedullin, ppADM) 基因以及ADM 的特异性受体组件降钙素受体样受体(calcitonin-receptor-like receptor,CRLR)和受体活性调节蛋白2 和3(receptor-activity-modifying proteins, RAMP2 和RAMP3)表达的变化。我们观察到:与对照组相比,以 3- 磷酸甘油醛脱氢酶作为内参照,15 d 足底电击结合噪声应激引起下丘脑、垂体和肾上腺中ppADM mRNA表达上调,而在延髓和中脑表达明显下调(P<0.01 或 P<0.05); CRLR基因表达量正常时在下丘脑相对较高,应激15 d 后CRLR 表达在延髓、中脑和下丘脑下调(P<0.01 或 P<0.05), 而在垂体和肾上腺的表达无明显变化;应激后RAMP2 基因在延髓和下丘脑表达上调,而在肾上腺表达显著下调(P <0.01), 其他部位无明显变化;RAMP3 基因在对照组大鼠的中脑和下丘脑表达较高,在应激性高血压大鼠的下丘脑和垂体表达上调(P<0.01 或P<0.05), 而在中脑和肾上腺表达下调(P<0.05), 在延髓中的表达变化无统计学差异。上述结果提示:慢性足底电击结合噪声应激引起明显的中枢和下丘脑- 垂体-肾上腺轴ADM 及其受体组件CRLR/RAMP2 或CRLR/R  相似文献   

20.
Expression of the calcitonin receptor-like receptor (CRLR) and its receptor activity modifying proteins (RAMPs) can produce calcitonin gene-related peptide (CGRP) receptors (CRLR/RAMP1) and adrenomedullin (AM) receptors (CRLR/RAMP2 or -3). A chimera of the CRLR and green fluorescent protein (CRLR-GFP) was used to study receptor localization and trafficking in stably transduced HEK 293 cells, with or without co-transfection of RAMPs. CRLR-GFP failed to generate responses to CGRP or AM without RAMPs. Furthermore, CRLR-GFP was not found in the plasma membrane and its localization was unchanged after agonist exposure. When stably coexpressed with RAMPs, CRLR-GFP appeared on the cell surface and was fully active in intracellular cAMP production and calcium mobilization. Agonist-mediated internalization of CRLR-GFP was observed in RAMP1/CGRP or AM, RAMP2/AM, and RAMP3/AM, which occurred with similar kinetics, indicating the existence of ligand-specific regulation of CRLR internalization by RAMPs. This internalization was strongly inhibited by hypertonic medium (0.45 m sucrose) and paralleled localization of rhodamine-labeled transferrin, suggesting that CRLR endocytosis occurred predominantly through a clathrin-dependent pathway. A significant proportion of CRLR was targeted to lysosomes upon binding of the ligands, and recycling of the internalized CRLR was not efficient. In HEK 293 cells stably expressing CRLR-GFP and Myc-RAMPs, these rhodamine-labeled RAMPs were co-localized with CRLR-GFP in the presence and absence of the ligands. Thus, the CRLR is endocytosed together with RAMPs via clathrin-coated vesicles, and both the internalized molecules are targeted to the degradative pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号