首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Types I and III collagens were solubilized from fetal human skin by limited digestion with pepsin and precipitated by dialysis against 0.02 M Na2HPO4. Heat denaturation of the collagens in 2 M guanidine-HCl, pH 7.5, resulted in the precipitation of the contaminant pepsin which could be removed by centrifugation. Renaturation of the denatured collagens by dialysis against deionized water at 22° for 2 hours selectively precipitated the type III collagen fibrils. Type I collagen remained in solution. The simplicity and high recovery (77%) make this a suitable approach for the rapid estimation of type III collagen in small tissue samples.  相似文献   

2.
Synthetic collagen peptides containing larger numbers of Gly‐Pro‐Hyp repeats are difficult to purify by standard chromatographic procedures. Therefore, efficient strategies are required for the synthesis of higher molecular weight collagen‐type peptides. Applying the Fmoc/tBu chemistry, a comparative analysis of the standard stepwise chain elongation procedure on solid support with the procedure based on the use of the synthons Fmoc‐Gly‐Pro‐Hyp(tBu)‐OH and Fmoc‐Pro‐Hyp‐Gly‐OH was performed. The crude products resulting from the stepwise elongation procedure and from the use of Fmoc‐Gly‐Pro‐Hyp(tBu)‐OH clearly revealed large amounts of microheterogeneities that result from incomplete imino acid acylation as well as from diketopiperazine formation with cleavage of Gly‐Pro units from the growing peptide chain. Conversely, by the use of the Fmoc‐Pro‐Hyp‐Gly‐OH synthon, the quality of the crude products was significantly improved; moreover, protection of the Hyp side chain hydroxyl function is not required using the Fmoc/tBu strategy. With this optimized synthetic procedure, relatively large collagen‐type peptides were obtained in satisfactory yields as highly homogeneous compounds. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Anionic and zwitterionic micelles are often used as simple models for the lipids found in bacterial and mammalian cell membranes to investigate antimicrobial peptide‐lipid interactions. In our laboratory we have employed a variety of 1D, 2D, and diffusion ordered (DOSY) NMR experiments to investigate the interactions of antimicrobial peptides containing unnatural amino acids with SDS and DPC micelles. Complete assignment of the proton spectra of these peptides is prohibited by the incorporation of a high percentage of unnatural amino acids which don't contain amide protons into the backbone. However preliminary assignment of the TOCSY spectra of compound 23 in the presence of both micelles indicated multiple conformers are present as a result of binding to these micelles. Chemical Shift Indexing agreed with previously collected CD spectra that indicated on binding to SDS micelles compound 23 adopts a mixture of α‐helical structures and on binding to DPC micelles this peptide adopts a mixture of helical and β‐turn/sheet like structures. DOSY NMR experiments also indicated that the total positive charge and the relative placement of that charge at the N‐terminus or C‐terminus are important in determining the mole fraction of the peptide that will bind to the different micelles. DOSY and 1H‐NMR experiments indicated that the length of Spacer #1 plays a major role in defining the binding conformation of these analogs with SDS micelles. Results obtained from molecular simulations studies of the binding of compounds 23 and 36 with SDS micelles were consistent with the observed NMR results. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 548–561, 2013.  相似文献   

4.
Matrix metalloproteinases (MMPs) are a family of enzymes responsible for the proteolytic processing of extracellular matrix (ECM) structural proteins under physiological and pathological conditions. During sprouting angiogenesis, the MMPs expressed by a single "tip" endothelial cell exhibit proteolytic activity that allows the cells of the sprouting vessel bud to migrate into the ECM. Membrane type I matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase MMP2, in the presence of the tissue inhibitor of metalloproteinases TIMP2, constitute a system of proteins that play an important role during the proteolysis of collagen type I matrices. Here, we have formulated a computational model to investigate the proteolytic potential of such a tip endothelial cell. The cell expresses MMP2 in its proenzyme form, pro-MMP2, as well as MT1-MMP and TIMP2. The interactions of the proteins are described by a biochemically detailed reaction network. Assuming that the rate-limiting step of the migration is the ability of the tip cell to carry out proteolysis, we have estimated cell velocities for matrices of different collagen content. The estimated velocities of a few microns per hour are in agreement with experimental data. At high collagen content, proteolysis was carried out primarily by MT1-MMP and localized to the cell leading edge, whereas at lower concentrations, MT1-MMP and MMP2 were found to act in parallel, causing proteolysis in the vicinity of the leading edge. TIMP2 is a regulator of the proteolysis localization because it can shift the activity of MT1-MMP from its enzymatic toward its activatory mode, suggesting a tight mechanosensitive regulation of the enzymes and inhibitor expression. The model described here provides a foundation for quantitative studies of angiogenesis in extracellular matrices of different compositions, both in vitro and in vivo. It also identifies critical parameters whose values are not presently available and which should be determined in future experiments.  相似文献   

5.
Abstract

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV–Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6?±?0.2?×?103?M?1 or 6.5?±?0.3?×?103M?1 and 5.7?±?0.4?×?104 M?1 or 1.8?±?0.5?×?103 M?1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.  相似文献   

6.
Rheumatoid arthritis is an autoimmune disease in which susceptibility is strongly associated with the expression of specific HLA-DR haplotypes, including DR1 (DRB1*0101) and DR4 (DRB1*0401). As transgenes, both of these class II molecules mediate susceptibility to an autoimmune arthritis induced by immunization with human type II collagen (hCII). The dominant T cell response of both the DR1 and DR4 transgenic mice to hCII is focused on the same determinant core, CII(263-270). Peptide binding studies revealed that the affinity of DR1 and DR4 for CII(263-270) was at least 10 times less than that of the model Ag HA(307-319), and that the affinity of DR4 for the CII peptide is 3-fold less than that of DR1. As predicted based on the crystal structures, the majority of the CII-peptide binding affinity for DR1 and DR4 is controlled by the Phe(263); however, unexpectedly the adjacent Lys(264) also contributed significantly to the binding affinity of the peptide. Only these two CII amino acids were found to provide binding anchors. Amino acid substitutions at the remaining positions had either no effect or significantly increased the affinity of the hCII peptide. Affinity-enhancing substitutions frequently involved replacement of a negative charge, or Gly or Pro, hallmark amino acids of CII structure. These data indicate that DR1 and DR4 bind this CII peptide in a nearly identical manner and that the primary structure of CII may dictate a different binding motif for DR1 and DR4 than has been described for other peptides that bind to these alleles.  相似文献   

7.
8.
In the preceding paper, we found that ensembles of tripeptides with long or bulky chains can include up to 20% of various turns. Here, we determine the structural and thermodynamic characteristics of GxG peptides with short polar and/or ionizable central residues (D, N, C), whose conformational distributions exhibit higher than average percentage (>20%) of turn conformations. To probe the side‐chain conformations of these peptides, we determined the 3J(Hα,Hβ) coupling constants and derived the population of three rotamers with χ1‐angles of ?60°, 180° and 60°, which were correlated with residue propensities by DFT‐calculations. For protonated GDG, the rotamer distribution provides additional evidence for asx‐turns. A comparison of vibrational spectra and NMR coupling constants of protonated GDG, ionized GDG, and the protonated aspartic acid dipeptide revealed that side chain protonation increases the pPII content at the expense of turn populations. The charged terminal groups, however, have negligible influence on the conformational properties of the central residue. Like protonated GDG, cationic GCG samples asx‐turns to a significant extent. The temperature dependence of the UVCD spectra and 3J(HNHα) constants suggest that the turn populations of GDG and GNG are practically temperature‐independent, indicating enthalpic and entropic stabilization. The temperature‐independent J‐coupling and UVCD spectra of GNG require a three‐state model. Our results indicate that short side chains with hydrogen bonding capability in GxG segments of proteins may serve as hinge regions for establishing compact structures of unfolded proteins and peptides. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Two novel copper (II) substituted thiosemicarbazone Schiff base complexes [Cu(L1)(µ-SCN)]n(NO3)2 (1) and [Cu2(µ-SCN)(SCN)(L2)2](NO3) (2) have been synthesized by condensing substituted thiosemicarbazides like 4-methyl-3-thiosemicarbazide or 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine. Both the metal complexes 1 and 2 are characterized using different spectroscopic techniques like IR, UV-Vis, ESR spectroscopy followed by elemental analysis, cyclic voltammetric measurement and single crystal X-ray structure analysis. X-ray crystal structure analysis reveal that complex 1 is polymeric while complex 2 is dimeric in nature. The coordination geometry around Cu(II) are square pyramidal in which thiosemicarbazone Schiff base ligand coordinate to the central Cu(II) atom in tridentate fashion. The prominent interaction patterns of 1 and 2 with CT-DNA were examined by employing electronic absorption and emission spectral titrations, cyclic voltammetry and viscosity measurements. All the results show that CT-DNA binds with both copper (II) complexes 1 and 2. Furthermore, protein binding ability in vitro of complexes 1 and 2 with both BSA and HSA were carried out using multispectroscopic techniques and a static quenching pattern was observed in both cases. Molecular docking study was employed to ascertain the exact mechanism of action of 1 and 2 with DNA and protein molecules (BSA and HSA). In vitro cytotoxicity activity of complexes 1 and 2 toward AGS and A549 was evaluated using MTT assay which demonstrates that both complexes 1 and 2 have superior prospectus to act as anticancer agents.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
A new calculation method to determine microscopic protonation processes from CD spectra measured at different pH and Cu(II):ligand ratios was developed and used to give the relative binding strengths for the three histidines of hsPrP(84-114), a 31-mer polypeptide modeling the N-terminal copper(II) binding region of human (homo sapiens) prion protein. Mutants of hsPrP(84-114) with two or one histidyl residues have also been synthesized and their copper(II) complexes studied by CD spectroscopy. The 1-His models were analyzed first, and the molar CD spectra for the different coordination modes on the different histidines were calculated using the general computational program PSEQUAD. These spectra were deconvoluted into the sum of Gaussian curves and used as a first parameter set to calculate the molar spectra for the different coordination modes (3N and 4N coordination) and coordination positions (His85, His96 and His111) of the 2-His peptides. The calculation method therefore does not require the direct use of CD spectra measured in the smaller peptide models. This is a significant improvement over earlier calculation methods. In the same runs, the stepwise deprotonation pK(mic) values were refined and the pH-dependent distribution of copper(II) between the two histidines was determined. The results revealed the high, but different copper(II) binding affinities of the three separate histidines in the following order: His85 < His96His111. The calculation also showed that molar CD spectra which belong to the same coordination mode and coordination position in different ligands have very similar transition energies but different intensities. For this reason, direct transfer of molar CD spectra between different ligands may be a source of error, but the pK(mic) values and the copper(II) binding preferences are transferable from the 2-His peptides to the 3-His hsPrP(84-114).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号