首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pollen grains ofSesamothamnus lugardii Stapf (Pedaliaceae of subdesert regions of SE tropical Africa) are associated in acalymmate tetrads (cross wall cohesion), with a tectate and perforate exine and 8–12 colpi. The pollen wall consists of an ectexine with a complete, perforate and ample tectum, columellated infratectum and clearly interrupted and fragmented foot layer. The endexine is built of scanty lamellae and granules. The intine is bistratificate, with a homogeneous, fibrillate layer (endintine or intine-2) and a heterogeneous, more lax and channeled layer (exintine or intine-1). Test for glycoprotein is particularly positive in the homogeneous internal intine and channels of external intine. On the other hand acid phosphatase has been localized in the exine and channeled external intine layers. These observations confirm the general interpretation of the distribution of wall compounds.  相似文献   

2.
3种番荔枝科植物花粉形态观察   总被引:1,自引:0,他引:1  
利用扫描电子显微镜对番荔枝科2属3种植物的干花粉形态进行了观察,旨在为番荔枝科植物花粉多样性及其演化关系提供形态学证据。观察结果显示,Asimina longifolia var.spatulata Kral、Asimina reticulate Shuttlew.ex Chapm.和Disepalum plagioneurum(Diels)D.M.Johnson 3种植物的花粉多为四合体,在Asimina reticulata内偶见二合体、三合体,Disepalum plagioneurum偶见多合体;四合体类型大多为偏菱形,A.reticulata和D.plagioneurum中偶见四角形;3种植物花粉表面纹饰分别为皱波状(rugulate)、微网状(microreticulate)和网状(reticulate)。花粉通过形成外壁短链接(short exine connections)或花粉联丝(pollen-connecting threads)的方式将四合体凝集成花粉块(pollinium),提高了单一传粉过程中卵细胞的受精几率。Asimina和Disepalum两属植物花粉在表面纹饰、四合体类型等方面都十分相似,支持两者在系统发育中亲缘关系较近的观点。  相似文献   

3.
Beschorneria yuccoides (Agavaceae) microspores are arranged mostly in planar tetrads. Later on, the pollen grains of the tetrad usually fall apart, but sometimes remain loosely connected by ektexine elements. The ektexine consists of a tectum, of short columellae, and of a thin, discontinuous foot layer. An endexine is absent. The bilayered intine is without any additional thickening that would usually indicate an aperture region. From this point of view the pollen grain might be considered as omniaperturate. The pollen ornamentation is reticulate with wide lumina and robust, smooth muri.

The pollen grains show an indistinct sulcus characterised by a loose reticulate ornamentation. The sulcus is not exactly at the distal pole, but shifted towards the equator. No pollen tubes are formed regularly at the sulcus. Instead, pollen tubes are normally formed at the proximal pollen face. The proximal area, indicating a large germination field, is morphologically and functionally clearly an aperture (a germination zone); however, it does not represent a sulcus. The proximal face of all pollen grains appears as ornamented, with some exine lumps.

Asimina triloba (Annonaceae) pollen is shed in permanent planar or decussate tetrads. The distal sides are microreticulate to foveolate, and do not show an aperture; the psilate proximal sides are the germination areas of A. triloba.

The presence of apertures placed at the proximal pole was reported for distinct taxa of several angiosperm families. For Drosera, Dionaea (Droseraceae) and most probably for the diaperturate Cuphea species (Lythraceae) the existence of polar germination areas can be excluded. However, in some Annonaceae taxa with permanent tetrads (Annona cherimola, Asimina triloba) a situation similar to Beschorneria might be present, and indeed a proximal polar pollen tube is formed. Beschorneria yuccoides, Annona cherimola and Asimina triloba are unequivocal examples of angiosperm pollen with an exactly proximal aperture (germination area).  相似文献   

4.
The pollen wall of tetrads located in different positions of a mature pollinium of Cymbidium goeringii was examined with the electron microscope, and the compositions of wall materials were also tested with different histochemical methods. In all tetrads of a pollinium, the pollen wall can be distingished into an exine and an intine, but the exine may be varied greatly according to the tetrad position in a pollenium. The part of the pollen wall (the outer wall) of the external tetrads, lying close, to the tapetum, is composed of two layers, i.e. the exine, and the intine. Theexine consists of tectum, granulate ectexine and endexine, without foot layer. The intine is cellulose in nature. In the outer wall between different groups of: tetrads and in the inner wall within an individual tetrad, the structure of ectexine becomes simple and the deposition of sporopollenin is roduced The degree of reduction of ectexine nicreases from the outer to inner tetrads in several external layers of a pollinium, and even the internal tetrads have a reduced ectexine or lack of it. The present study also demonstrates that the mechanism of pollen aggregation into a pollinium is built on a combined effect of the following features: (1) connected bridges formed' by intine between two pollens within a tetrad, (2) formation of cytoplasmic channels between two pollens within a tetrad, (3) incomplete cell wall formation within a tetrad, (4) little size of tetrads and compact arrangement of mature tetrads and (5) a sticky viscin material surrounded on the outside of a pollinium.  相似文献   

5.
A palynological study of the genus Mentha L. (Lamiaceae)   总被引:1,自引:0,他引:1  
The pollen morphology and exine structure of 10 Mentha L . species were investigated using light microscopy and scanning electron microscopy. The pollen grains of all 11 species were hexazonocolpate with granular membranes and a circular amb, varying in shape from prolate-spheroidal to suboblate. Different colpus shapes were recognized in M . ×  dumetorum . The exine was bireticulate in section Pulegium , and reticulate in section Menthae . A correlation was found between pollen size and chromosome number. The results indicate that the pollen characters of the genus Mentha are valuable for taxonomic applications and may be useful for classification.  © 2008 Uludag University. Journal compilation © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 157 , 141–154.  相似文献   

6.
Microsporogenesis, microgametogenesis and pollen morphology of six species of genus Passiflora L. belonging to three subgenera ( Passiflora , Dysosmia , Decaloba ) were studied with light and scanning microscopy; P. caerulea was also examined with transmission microscopy. The tapetum is secretory, microspore tetrads are tetrahedral and pollen grains are two-celled when shed. Small Ubisch bodies are attached to a peritapetal membrane; they are a product of tapetal activity and the rough endoplasmic reticulum (ERr) appears to be involved in their origin. The pollen grains of all the species are subspheroidal, zonocolpate, geminicolpate. Each pair of colpi anastomoses at the poles. The exine is semitectate, reticulate, heterobrochate. The muri are simplibaculate, wavy. The lumina have clavate bacula of varying height. The colpus structure is similar to that of the lumina but generally with fewer and smaller bacula. Lumina size and amount of bacula inside the lumina vary between subgenera. The grains from subgenera Passiflora and Dysosmia differ from those of Decaloba in their size and number of colpi. The pollen and microsporangium morphology of the species of subgenera Passiflora and Dysosmia are more similar than those of subgenus Decaloba . The results are discussed in relation to the current taxonomic classification.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society of London , 2002, 139 , 383–394.  相似文献   

7.
利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了美乐多(Melodorum fruticosum)的花粉形态特征。美乐多花粉为球形或扁圆形的单粒花粉,外壁纹饰为微褶皱状,有点状凹陷,无任何萌发孔或萌发沟。花粉外壁由外壁外层包括覆盖层(连续)、覆盖下层、基足层(1~3层薄片层结构,偶断裂或扭曲至6~10层)和外壁内层(连续)组成。其中,覆盖下层,其厚度为整个花粉外壁厚度的1/2,为混合型结构,即小柱状和颗粒状同时存在,但以颗粒状为主。花粉内壁分为内壁外层和内壁内层,其厚度逐渐变薄。美乐多的花粉特征(单粒、无萌发孔或沟、覆盖层连续、基足层为薄片层结构、花粉外壁内层薄等)与紫玉盘族其他类群一致。  相似文献   

8.
利用扫描和透射电子显微镜,观察了番荔枝科(Annonaceae)4属4种植物的花粉形态与结构.刺果番荔枝(Annona muricata)和金钩花(Pseuduvaria trimera)为四合花粉,有四角形、偏菱形、T-型、十字形和四面体形.前者花粉表面具小穿孔,后者为皱波状纹饰.蕉木(Oncodostigma hainanense)和那大紫玉盘(Uvaria macclurei)为单花粉,前者表面为皱波状纹饰,后者为粗褶皱状纹饰.透射电子显微镜下,蕉木和那大紫玉盘覆盖层较厚、连续.蕉木覆盖下层较薄,偶尔可见颗粒状物质或不规则小柱,为过渡型覆盖下层;那大紫玉盘覆盖下层颗粒状.基层分为内外两层,外层较厚,平或呈波浪状,内层具有2~4片层结构.在不同属或同属不同种之间,花粉特征差异较大,多样性非常丰富.金钩花具有四合花粉、覆盖下层小柱状等进化特征,同时又具有花粉粒小、覆盖层无穿孔等较原始特征.  相似文献   

9.
The structure of the massulae composing the pollinium ofLoroglossum hircinum was studied before pollination and 12 and 24 hours afterwards. The grains are grouped in tetrads closely packed in massulae. The exine is only present on the outside of the massulae. The intine consists of two layers: a compact layer surrounding the pollen grain and a looser layer surrounding the pollen grain and a looser layer surrounding the tetrad. Twelve hours after pollination, pollen volume and the space between the tetrads increase due to vacuolization. Twenty-four hours after pollination, pollen volume and tetrad spacing are higher due to vacuolization and some grains have emitted pollen tubes. Pollen growth due to vacuole formation, and the absence of common walls between adjacent tetrads lead to crumbling of the massulae. The mature pollen grain does not have apertures: the site of pollen tube emission is determined after pollination. The first grains to germinate are those in the centre of the massula. The vegetative cell nucleus is the first to enter the pollen tube; the generative cell elongates and undergoes the second haploid mitosis shortly after entering the pollen tube.  相似文献   

10.
Yunyun Shao 《Grana》2018,57(3):161-177
The pollen morphology of 49 species and one variety, representing 18 genera of the family Annonaceae from Thailand, is described and illustrated based on observations using scanning electron microscopy (SEM). The pollen grains of Anaxagorea show double-spheres as a result of the intine extrusion. The palynological evidence confirms the close relationship of Dasymaschalon, Desmos and Asian Friesodielsia. Decussate tetrads in Goniothalamus and coexisting tetragonal, rhomboidal, T-shaped, tetrahedral and decussate tetrads in Mitrephora are reported. Pollen morphology is consistent within Huberantha, Marsypopetalum and Monoon, but is more diverse in Polyalthia sensu stricto Pollen unit, shape, size, ornamentation and aperture number reaffirm the great diversity among and within genera in Annonaceae.  相似文献   

11.
Pollen grains of six species of Gnetum , G. parvifolium , G. hainanense , G. luofuense , G. pendulum , G. cleistostachyum and G. montanum , collected from China were examined using light, scanning and transmission electron microscopy. Pollen grains of Gnetum are subspheroidal or irregular-apolar, inaperturate, 11.21–22.44 µm in long axis and 9.34–20.47 µm in short axis. The exine surface is covered with spinules, 0.50(0.30–0.71) µm long spaced on average 1.12(0.81–1.46) µm apart. The exine is about 0.55 µm thick and comprises ectexine and endexine. The ectexine includes a thin tectum and an infratectal granular layer. The tectum protrudes outwards, forming the spinules. The endexine is composed of discontinuous lamellae, with lacunae between lamellae. The pollen grains of Gnetum are compared with those of Ephedra and Welwitschia , and also those of the ANITA Group of angiosperms, including Amborellaceae, Nymphaeales, Illiciales, Trimeniaceae and Austrobaileyaceae. The exine ultrastructures of Gnetum , Ephedra and Welwitschia are quite similar, consisting of tectum, granular layer and lamellated endexine. The exine ultrastructure of Gnetum is also similar to that of Nymphaea colorata (Nymphaeaceae) in the transitional region between the proximal and distal poles, but differs from that of Amborellaceae, Illicium religiosum (Illiciaceae), Schisandra (Schisandraceae), Trimeniaceae and Austrobaileyaceae. This comparison of exine ultrastructure provides new evidence for consideration of the relationship between Gnetum and the ANITA Group.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 415–425.  相似文献   

12.
In Onagraceae, pollen is shed in mature tetrads in most Epilobieae, many species of Ludwigia (Jussiaeeae), and two closely related species of the large genus Camissonia (Onagreae). Mature tetrads of Camissonia cardiophylla and representative species of Epilobium and Ludwigia were examined with light, scanning, and transmission electron microscopes. Morphological diagnoses of monad units indicated that individual taxa could be readily distinguished. Statistical analyses of tetrads which remained after acetolysis treatment revealed significant differences in the strength of the binding mechanisms. Mechanisms of tetrad cohesion were found to consist of two principal types. Common to all taxa is cohesion of pollen wall surfaces at the aperture margins; this mechanism is well known in many angiosperm groups. With the exception of Camissonia, the remaining taxa also display binding by means of short exine fragments between adjacent pollen units. These fragments, termed bridges and reported here for the first time, are located in the area extending from the aperture margins to near the center of the proximal exine faces. Thin sections reveal that layers of the bridges are identical with those of the exine. Comparisons were made between bridges and viscin threads, both of which occur on the proximal faces of the grains. Viscin threads are present on all pollen grains in Onagraceae and exhibit distinctive morphologies, and bridges were viewed morphogenetically as related to viscin threads but including an endexine layer and occupying a position near the apertures where cohesion of wall surfaces also occurs. In an evolutionary sense, the formation of mature tetrads almost certainly occurred independently in Camissonia and may have done so in Ludwigia and the Epilobieae.  相似文献   

13.
云南松花粉形态研究   总被引:3,自引:0,他引:3  
在云南松(Pinus yunnanensis Fr.)小孢子发生发育过程中,花粉母细胞、四分孢子及花粉粒均见有粘连现象。花粉气囊的形态、大小变化复杂多样。除一般具两个正常气囊的花粉粒外,还观察到气囊不发育、具一个气囊、二个异形气囊、三个气囊和四个气囊的花粉粒。成熟花粉壁从外至内可分为外壁外层、外壁内层、内壁外层和内壁内层,它们的构成成分及形态均有明显差别。贮存后花粉的内壁结构发生了明显变化。  相似文献   

14.
In order to provide new insights into phylogenetic relationships among the neotropical taxa of Phyllanthus , 28 illustrations are provided of the pollen grains of 22 selected species studied from 11 sections of the subgenera represented in the neotropics. Special attention has been given to subgenus Conami because of its variability in pollen morphology: of eight species illustrated, the apertures are diploporate colpi in three species and pores in five species; exine ornamentation is vermiculate in two species and pilate in the other six species. The six species in the neotropical sections Pityrocladus and Microglochidion (subgenus Emblica ) are characterized by prolate grains with an increased number of colpi (4–8). Of particular interest are species in which the pollen exine is clypeate (with exine shields); clypeate pollen grains are illustrated in two species of subgenus Xylophylla and in one species of section Cyclanthera that has unique exine shields with single central pila. The pollen of the one Brazilian phylloclade-bearing species illustrated (in section Choretropsis ) has 3-colporate grains with reticulate exine, typical for subgenus Phyllanthus , and very different from the clypeate grains of the West Indian phylloclade-bearing species in section Xylophylla . This pollen evidence clearly demonstrates homoplasy in the origin of phylloclades in Phyllanthus . Pollen morphological data suggest that the neotropical taxa of Phyllanthus have arisen following colonization from Africa (subgenus Kirganelia ) and Asia (subgenus Emblica ). © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 325–338.  相似文献   

15.
The development of pollen grains and tapetum in Mitriostigma axillare (Rubiaceae) was studied from anther primordium to dehiscence. Anthers were freeze-cracked and studied with SEM. Embedded anthers were sectioned and studied with LM and TEM. Cytochemistry was performed in order to distinguish the different layers of the sporoderm and to determine its chemical nature at different development stages. The pollen grains remained as tetrads by partial fusion of the exine, probably because of reduced callose septa during the stage of microspore tetrads within callose envelopes. Characteristic features of the sporoderm were an irregular foot layer, an endexine composed of amalgamated granules, a transient granular-fibrous layer beneath the endexine, and a thin intine. During maturation of the exine, the endexine became chemically different from the ectexine. All layers of the sporoderm were reduced in thickness due to stretching during the engorgement of the pollen grains prior to dehiscence. The pollen grains were colpoidorate with a reticulate to microreticulate tectum covered with a scanty surface coating. The mature pollen grains were binucleate and contained a lot of starch grains. Thick intineous onci protruded through the apertures and formed papillae. About 50% of the microspores were aborted. The tapetum was of secretory type, probably with cycles of hyperactivity and protrusions of the cells into the locular cavity. No syncytium was formed and there were neither orbicules nor tapetal membrane.  相似文献   

16.
The pollen morphology of eleven (Baroniella Constantin & Galland, Baseonema Schltr. & Rendle, Camptocarpus Decne., Cryptolepis R. Br., Cryptostegia R. Br., Gonocrypta Baill., Harpanema Decne., Ischnolepis Jum. & H. Perrier, Menabea Baill., Pentopetia Decne., and Tanulepis Balf. f.) of the 13 genera of the Periplocaceae from Madagascar have been examined using light-, scanning-, and transmission electron microscopy. All of the genera are characterized by pollen grains arranged in tetrads. The arrangement of the grains may be rhomboidal, decussate or tetragonal. The 4–6 pores present are restricted to the junction area of adjacent grains. Cryptostegia differs from the other genera in that the arrangement of pollen grains is only decussate. In Menabea the tetrads are united into a pollinium. The exine is smooth and consists of a distal stratum (tectum), subtended by a granular stratum consisting of granules of unequal size. Towards the base larger granules are present. In Camptocarpus, Harpanema and Tanulepis the exine is stratified into a distal stratum (tectum), a thin granular stratum and an almost continuous basal stratum (foot layer). The inline is well developed. The pollen grains of tetrads are connected by wall bridges (cross-wall cohesion). The internal walls in Camptocarpus, Harpanema and Tanulepis differ from the other genera in the absence of a tectum. The pollen morphology of the taxa investigated is very similar and of little value for distinguishing the species and genera investigated. The distinctive difference in exine structure between the above mentioned three genera and other genera investigated emphasizes the importance of exine ultrastructure in the Periplocaceae.  相似文献   

17.
The morphology and ultrastructure of fresh pollen from nine species, one including two varieties representing seven genera of Annonaceae are described based on observations with scanning and transmission electron microscopy. The pollen grains are elliptic with a single furrow, or disulculate. Some are globose with no visible aperture or any indication of a pole. Ornamentation is smooth, rugulate, echinate or verrucate. The tectum is usually continuous and of the same thickness over the whole grain except for the aperture zone, where the exine elements are very often imperceptible. The infratectum may be granular, or columellae and granules are mixed together. The foot layer consists of continuous or irregularly contorted foliations. The endexine is distinct and thin, and varies slightly in thickness in some species, but is vaguely distinguishable in others. The intine is two-layered and consists of an entexine with many vesicular-fibrillar components with tubular extensions, and a more homogeneous endintine. The controversy around the presence of an endexine in Annonaceae is discussed, but whether its presence is ancestral cannot be determined. Data on fresh pollen are compared with those from similar studies on dried pollen.  相似文献   

18.
F. B. Sampson 《Grana》2013,52(2):61-73
Hedycarya has pollen in permanent tetrads. H. arborea, the New Zealand species, differs from others studied, in having a cap of more or less imperforate tectum at the distal pole of each grain. This polar region is not an aperture and the pollen tube emerges through a papillose part of the external wall of each grain. Transmission electron microscope studies of immature and mature tetrads reveal a most unusual exine structure. "Radial processes" develop by accumulation of sporopollenin around unit membranes of similar dimensions to the plasmalemma, and extend from just beyond the intine to the tectal region. The entire exine is considered ectexinous. During development, members of a tetrad are interconnected by cytoplasmic channels and the synchronous division into generative and vegetative nuclei within each tetrad is attributed to their presence. The channels become closed by the deposition of intine. Comparisons are made with exine structure in some other members of the woody Ranales and with some other plants with tetrad pollen.  相似文献   

19.
20.
The developmental stages of the pollen wall and tapetum, together with exine morphology were studied in a number of Crocus species, by light and scanning electron microscopy. Gametogenesis was characterized by: 1) development of a thick intine, 2) single mitosis, and 3) terminal amylolysis. The tapetum was of the secretory type. In C. cartwrightianus cv. albus, abnormal sporogenesis and gametogenesis produced vacuolate pollen grains with a reduced-or no intine layer, and rich with starch granules; the tapetum was either of the parietal-or amoeboid type. The exine was echinate and the pollen grains had different types of aperture: furrows, colpi or pores. The ornamentation varied from microreticulate to irregularly perforate. The exine framework was overlaid by a pellicle resistant to chloroform-carbon disulphide, on which a layer of pollenkitt was deposited. The results are discussed from both cytological and evolutionary viewpoints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号