首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction and mixing of membrane components in sonicated unilamellar vesicles and also non-sonicated multilamellar vesicles prepared from highly purified phospholipids suspended in NaCl solutions has been examined. Electron microscopy and differential scanning calorimetry were used to characterize the extent and kinetics of mixing of membrane components between different vesicle populations. No appreciable fusion was detected between populations of non-sonicated phospholipid vesicles incubated in aqueous salt (NaCl) solutions. Mixing of vesicle membrane components via diffusion of phospholipid molecules between vesicles was observed in populations of negatively charged phosphatidylglycerol vesicles but similar exchange diffusion was not detected in populations of neutral phosphatidylcholine vesicles. Incubation of sonicated vesicle populations at temperatures close to or above the phospholipid transition temperature resulted in an increase in vesicle size and mixing of vesicle membrane components as determined by a gradual change in the thermotropic properties of the mixed vesicle population. The interaction of purified phospholipid vesicles was also examined in the presence of myristic acid and lysolecithin. Our results indicate that while these agents enhance mixing of vesicle membrane components, in most cases mixing probably proceeds via diffusion of phospholipid molecules rather than by fusion of entire vesicles. Increased mixing of vesicle membrane components was also produced when vesicles were prepared containing a purified hydrophobic protein (myelin proteolipid apoprotein) or were incubated in the presence of dimethylsulfoxide. In these two systems, however, the evidence suggests that mixing of membrane components results from the fusion of entire vesicles.  相似文献   

2.
A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed Electron Spin Resonance (ESR) spectra which may be analyzed with high precision. The new method relies on the use of the second harmonic display of the ESR spectrum followed by spectral line fitting. Spectral fitting yields precise ESR parameters giving detailed information on the surroundings of the spin probe in both phospholipid and aqueous phases. The nitrogen hyperfine coupling constant of DTBN arising from those probes occupying the vesicles is used to study the hydration of the vesicle surface. The hydration properties of the negatively charged vesicle surface of DMPG vesicles are affected by the addition of salt at all temperatures. In contrast, the hydration of DMPC vesicles does not change with salt concentration at the low temperatures. However, at higher temperatures the hydration properties of DMPC vesicle are affected by salt which is interpreted to be due to the faster motion of the phospholipid molecules. The partitioning of the spin probe increases with salt concentration for both DMPG and DMPC vesicles, while water penetration decreases simultaneously. The spin probe in the phospholipid bilayer exhibits anisotropic motion and the extent of the anisotropy is increased at the higher salt concentrations.  相似文献   

3.
Interactions of the peptides melittin and magainin with phospholipid vesicle membranes have been studied using fluorescence correlation spectroscopy. Molecular interactions of melittin and magainin with phospholipid membranes are performed in rhodamine-entrapped vesicles (REV) and in rhodamine-labelled phospholipid vesicles (RLV), which did not entrap free rhodamine inside. The results demonstrate that melittin makes channels into vesicle membranes since exposure of melittin to vesicles causes rhodamine release only from REV but not from RLV. It is obvious that rhodamine can not be released from RLV because the inside of RLV is free of dye molecules. In contrast, magainin breaks vesicles since addition of magainin to vesicles results in rhodamine release from both REV and RLV. As the inside of RLV is free of rhodamine, the appearance of rhodamine in solution confirms that these vesicles are broken into rhodamine-labelled phospholipid fragments after addition of magainin. This study is of pharmaceutical significance since it will provide insights that fluorescence correlation spectroscopy can be used as a rapid protocol to test incorporation and release of drugs by vesicles.  相似文献   

4.
Analysis of pressure-collapse curves of Halobacterium cells containing gas vesicles and of gas vesicles released from such cells by hypotonic lysis shows that the isolated gas vesicles are considerably weaker than those present within the cells: their mean critical collapse pressure was around 0.049-0.058 MPa, as compared to 0.082-0.095 MPa for intact cells. The hypotonic lysis procedure, which is widely used for the isolation of gas vesicles from members of the Halobacteriaceae, thus damages the mechanical properties of the vesicles. The phenomenon can possibly be attributed to the loss of one or more structural gas vesicle proteins such as GvpC, the protein that strengthens the vesicles built of GvpA subunits: Halobacterium GvpC is a highly acidic, typically "halophilic" protein, expected to denature in the absence of molar concentrations of salt.  相似文献   

5.
The proton NMR spectra of the N-methyl choline region of normal and lecithin:cholesterol acyltransferase (LCAT)-deficient lipoproteins and of egg yolk phosphatidylcholine-cholesterol 55:45 (mol %) vesicle mixtures have been examined in the presence and absence of manganous sulfate as a line-broadening reagent. Manganous ions quenched all of the signal arising from normal lipoproteins and only part of the vesicle signal corresponding to the outer monolayer. There was no net loss of vesicular phospholipid when vesicles were added to normal lipoproteins and as little as 5% (or 100 micrograms) of the vesicular phospholipid could be detected and quantitated in the mixture of lipoproteins. Similar experiments performed on plasma lipoproteins from an LCAT-deficient patient indicated that 42% of the phospholipid was associated with vesicular lipoproteins. These experiments demonstrate that this technique can be used to detect and quantify small amounts of vesicular structures directly in a mixture of micellar lipoproteins.  相似文献   

6.
The presence of small vesicles composed of phospholipid and cholesterol has recently been demonstrated in super-saturated model and in dilute native human biles by several groups using differing methods. Among compositional factors shown to favor spontaneous vesicle formation and prolong the cholesterol monohydrate nucleation time in model bile systems are dilution, a raised cholesterol saturation index (CSI), and a low bile salt/phospholipid ratio. Time-lapse video-enhanced microscopy of a series of model bile systems representing systematically designed variations in the above factors revealed strong evidence for an essential linkage between antecedent vesicle aggregation and subsequent crystal nucleation. Stability of vesicles was inversely related to their degree of cholesterol saturation, i.e., the greater the degree of vesicular cholesterol saturation, the less their stability (metastability). Instability of vesicles was reflected by their early aggregation followed by rapid cholesterol crystal nucleation. The lowest degree of vesicular cholesterol saturation was found in dilute systems which also exhibited the greatest metastability despite a high degree of cholesterol solubility (raised CSI). Conversely, the more concentrated and least metastable systems exhibited both rapid vesicle aggregation and rapid onset of crystal nucleation. These systems, while influenced by the other compositional factors, were found to have a high degree of vesicular cholesterol saturation, i.e., cholesterol/phospholipid molar ratio = 2.0. An additional finding was the extreme variability in the proportionate distribution of total solution cholesterol distributed to the vesicular phase, i.e., from zero to as high as 37%. Higher solute concentration, raised bile salt/lecithin ratio, and raised CSI were interactive and almost equally capable of increasing the proportionate amount of cholesterol in the vesicular phase. In conclusion, lipid compositional differences in model bile systems drastically affect the cholesterol saturation of spontaneously formed phospholipid-cholesterol vesicles. This effect, in turn, exerts a potent influence upon the metastability of vesicles, subsequently affecting the cholesterol crystal nucleation time.  相似文献   

7.
An externally applied electric field across vesicles leads to transient perforation of the membrane. The distribution and lifetime of these pores was examined using 1,2-di-oleoyl-sn-glycero-3-phosphocholine (DOPC) phospholipid vesicles using a standard fluorescent microscope. The vesicle membrane was stained with a fluorescent membrane dye, and upon field application, a single membrane pore as large as approximately 7 microm in diameter was observed at the vesicle membrane facing the negative electrode. At the anode-facing hemisphere, large and visible pores are seldom found, but formation of many small pores is implicated by the data. Analysis of pre- and post-field fluorescent vesicle images, as well as images from negatively stained electron micrographs, indicate that pore formation is associated with a partial loss of the phospholipid bilayer from the vesicle membrane. Up to approximately 14% of the membrane surface could be lost due to pore formation. Interestingly, despite a clear difference in the size distribution of the pores observed, the effective porous areas at both hemispheres was approximately equal. Ca(2+) influx measurements into perforated vesicles further showed that pores are essentially resealed within approximately 165 ms after the pulse. The pore distribution found in this study is in line with an earlier hypothesis (E. Tekle, R. D. Astumian, and P. B. Chock, 1994, Proc. Natl. Acad. Sci. U.S.A. 91:11512--11516) of asymmetric pore distribution based on selective transport of various fluorescent markers across electroporated membranes.  相似文献   

8.
A novel development has allowed for the direct observation of single, pairwise interactions of linear DNA with cationic vesicles and of DNA-cationic lipid complexes with anionic vesicles. A new cationic phospholipid derivative, l,2-dioleoyl-sn-glycero-3-ethylphosphocholine, was used to prepare giant bilayer vesicles and to form DNA-cationic lipid complexes (lipoplexes). The cationic vesicles were electrophoretically maneuvered into contact with DNA, and similarly, complexes were brought into contact with anionic phospholipid vesicles composed of dioleoylphosphatidylglycerol (DOPG; 100%), DOPG/dioleoylphosphatidylethanolamine (DOPE; 1:1) or DOPG/dioleoylphosphatidylcholine (DOPC; 1:1). Video fluorescence microscopy revealed that upon contact with phospholipid anionic vesicles, lipoplexes exhibited four different types of behavior: adhesion, vesicle rupture, membrane perforation (manifested as vesicle shrinkage and/or content loss), and expansion of DNA (which was always concomitant with membrane perforation.) In one instance, the lipoplex was injected into the target vesicle just prior to DNA expansion. In all other instances, the DNA expanded over the outer surface of the vesicle, and expansion was faster, the larger the area of vesicle over which it expanded. Given the likelihood of incorporation of cellular anionic lipids into lipoplexes, the expansion of the DNA could be important in DNA release during cell transfection. Upon contact with naked DNA, giant cationic vesicles usually ruptured and condensed the DNA into a small particle. Contact of cationic vesicles that were partially coated with DNA usually caused the DNA to wrap around the vesicle, leading to vesicle rupture, vesicle fusion (with other attached vesicles or lipid aggregates), or simply cessation of movement. These behaviors clearly indicated that both DNA and vesicles could be partly or fully covered by the other, thus modifying surface charges, which, among others, allowed adhesion of DNA-coated vesicles with uncoated vesicles and of lipid-coated DNA with uncoated DNA.  相似文献   

9.
Abstract Reconstitution of the anion exchange protein from human erythrocytes (band 3) into phospholipid vesicles was shown to have a protective effect on melittin lysis of the vesicles when compared to pure lipid vesicles. Low salt buffer was found to cause an inhibition of lysis in both proteoliposomes and pure lipid vesicles compared to salt buffer. High phosphate concentration did not seem to cause inhibition of lysis in the reconstituted system. However, an inhibition is observed in pure lipid vesicle control, which is contradictory to previous reports.  相似文献   

10.
Platelet membrane glycoproteins (GP) IIb and IIIa have been identified as platelet aggregation sites. These glycoproteins form a heterodimer complex (GP IIb-IIIa) in the presence of Ca2+. To study the morphology of this glycoprotein complex in membranes, we incorporated GP IIb-IIIa into artificial phospholipid vesicles using a detergent (octyl glucoside) dialysis procedure. Phosphatidylserine-enriched vesicles (70% phosphatidylserine, 30% phosphatidylcholine) incorporated approximately 90% of the GP IIb-IIIa as determined by sucrose flotation. Glycoprotein IIb-IIIa incorporation into the vesicles was unaffected by ionic strength, suggesting a hydrophobic interaction between the glycoprotein and the phospholipid. In both intact platelets or phospholipid vesicles, GP IIb was susceptible to neuraminidase hydrolysis, indicating that most of the glycoprotein complexes were oriented toward the outside of the platelets or vesicles. The morphology of GP IIb-IIIa in the phospholipid vesicles was observed by negative staining electron microscopy. Individual GP IIb-IIIa complexes appeared as spikes protruding as much as 20 nm from the vesicle surface. Each spike consisted of a GP IIb "head," which was distal to the vesicle and was supported by the GP IIIa "tails." The GP IIb-IIIa complex appeared to be attached to the vesicle membrane by the tips of the GP IIIa tails. Treatment of vesicles with EGTA dissociated the GP IIb-IIIa complex. The dissociated glycoproteins remained attached to the phospholipid vesicles, indicating that both GP IIb and GP IIIa contain membrane-attachment sites. These data suggest a possible structural arrangement of the GP IIb-IIIa complex in whole platelets.  相似文献   

11.
The destruction of small unilamellar egg phosphatidylcholine vesicles in rat plasma was monitored by measuring release of encapsulated 125I-poly(vinylpyrrolidone) or carboxyfluorescein and by determining transfer of radiolabelled phosphatidylcholine to plasma lipoproteins by means of gel filtration. The susceptibility of the vesicles to the destructive action of plasma increased with decreasing vesicle size, as observed by incubating plasma with individual fractions constituting the small-vesicle peak on Sepharose CL-2B. This results in selective destruction of small vesicles when heterogeneous vesicle populations are incubated with plasma. Samples of homogeneous vesicle populations were incubated with a wide range of plasma concentrations, which resulted in extents of solute and phospholipid release ranging from 10 to 90%. When the extents of solute release were plotted against the extents of lipid release a linear, virtually 1:1, relationship was found, for both carboxyfluorescein and poly(vinylpyrrolidone) as the solute. This suggests that the release of solutes from small unilamellar phosphatidylcholine vesicles as a result of their interaction with plasma (lipo)proteins involves the total destruction of a fraction of the vesicles, the magnitude of which is determined by the vesicle: plasma ratio. Our results argue against a previously presented view suggesting that the interaction between such vesicles and plasma results in the formation of pores through which encapsulated solutes diffuse at Mr-dependent rates [Kirby & Gregoriadis (1981) Biochem. J. 199, 251-254]. The discrepancies between the two studies in observations as well as in interpretation are discussed.  相似文献   

12.
The equilibrium uptake of hydrophilic solutes, D-glucose and L-carnitine, by large unilamellar phospholipid vesicles composed of egg lecithin (PC), phosphatidic acid (PA), and various concentrations of cholesterol (Chol) has been measured. Calculation of the encapsulated volume of PC-PA and PC-PA-Chol vesicles, based on electron-microscopy data, agreed with the values directly measured by fluorescence techniques. Likewise, vesicle surface areas determined directly and from electron microscopy were in good agreement. Equilibrium uptake experiments by these well-characterized vesicles showed that glucose was taken up in excess of that amount predicted on the basis of the encapsulated aqueous volume. In contrast, the equilibrium uptake of carnitine can be predicted solely on the basis of the vesicle encapsulated volume. Each excess glucose molecule was found to be associated with from 7 to 5200 phospholipid molecules for 100 and 0.1 mM glucose, respectively. Uptake of glucose by PC-PA-Chol vesicles is independent of the cholesterol concentration and is similar to that observed in PC-PA vesicles. The cholesterol concentration independence and oil/buffer partitioning studies with octane and octanol, coupled with previous studies, strongly suggest that excess glucose is located in the vicinity of the phospholipid head group. A probable mechanism would have phospholipid, water and glucose all involved in the interaction rather than a competition between water and glucose for the phospholipid surface, as has been suggested in the literature.  相似文献   

13.
Hemoglobin (Hb) vesicles have been developed as cellular-type Hb-based O(2) carriers in which a purified and concentrated Hb solution is encapsulated with a phospholipid bilayer membrane. Ferrous Hb molecules within an Hb vesicle were converted to ferric metHb by reacting with reactive oxygen species such as hydrogen peroxide (H(2)O(2)) generated in the living body or during the autoxidation of oxyHb in the Hb vesicle, and this leads to the loss of O(2) binding ability. The prevention of metHb formation by H(2)O(2) in the Hb vesicle is required to prolong the in vivo O(2) carrying ability. We found that a mixed solution of metHb and L-tyrosine (L-Tyr) showed an effective H(2)O(2) elimination ability by utilizing the reverse peroxidase activity of metHb with L-Tyr as an electron donor. The time taken for the conversion of half of oxyHb to metHb (T(50)) was 420 min for the Hb vesicles containing 4 g/dL (620 microM) metHb and 8.5 mM L-Tyr ((metHb/L-Tyr) Hb vesicles), whereas the time of conversion for the conventional Hb vesicles was 25 min by stepwise injection of H(2)O(2) (310 microM) in 10 min intervals. Furthermore, in the (metHb/L-Tyr) Hb vesicles, the metHb percentage did not reach 50% even after 48 h under a pO(2) of 40 Torr at 37 degrees C, whereas T(50) of the conventional Hb vesicles was 13 h under the same conditions. Moreover, the T(50) values of the conventional Hb vesicles and the (metHb/L-Tyr) Hb vesicles were 14 and 44 h, respectively, after injection into rats (20 mL/kg), confirming the remarkable inhibitory effect of metHb formation in vivo in the (metHb/L-Tyr) Hb vesicles.  相似文献   

14.
The molecularity of the ion channel formed by peptide fragments of colicin has taken on particular significance since the length of the active peptide has been shown to be less than 90 amino acids and the lumen size at least 8 A. Cell survival experiments show that killing by colicin obeys single-hit statistics, and ion leakage rates from phospholipid vesicles are first order in colicin concentration. However, interpretation in molecular terms is generally complicated by the requirement of large numbers of colicin molecules per cell or vesicle. We have measured the discharge of potential across membranes of small phospholipid vesicles by following the changes in binding of potential sensitive spin labeled phosphonium ions as a function of the number of colicin fragments added. Because of the sensitivity of the method, it was possible to reliably investigate the effect of colicin in a range where there was no more than 0.2 colicins per vesicle. The quantitative results of these experiments yield a direct molecular stoichiometry and demonstrate that one C-terminal fragment of the colicin molecule per one vesicle is sufficient to induce a rapid ion flux in these vesicles. In addition, the experiments confirm earlier findings that the colicin fragments do not migrate from one vesicle to another at pH 4.5. Similar results are obtained with large unilamellar vesicles.  相似文献   

15.
The effects of proteins on divalent cation-induced phospholipid vesicle aggregation and phospholipid vesicle-monolayer membrane interactions (fusion) were examined. Glycophorin (from human erythrocytes) suppressed the membrane interactions more than N-2 protein (from human brain myelin) when these proteins were incorporated into acidic phospholipid vesicle membranes. The threshold concentrations of divalent cations which induced vesicle aggregation were increased by protein incorporation, and the rate of vesicle aggregation was reduced. A similar inhibitory effect by the proteins, incorporated into lipid vesicle membranes, was observed for Ca2+-induced lipid vesicle-monolayer interactions. However, when these proteins were incorporated only in the acidic phospholipid monolayers, the interaction (fusion) of the lipid vesicle-monolayer membranes, induced by divalent cations, was not appreciably altered by the presence of the proteins.In contrast to these two proteins, the presence of synexin in the solution did enhance the Ca2+-induced aggregation of phosphatidylserine vesicles, but did not seem to affect the degree of Ca2+-induced fusion between phosphatidylserine/phosphatidylcholine (1:1) and phosphatidylserine vesicles and monolayer membranes.  相似文献   

16.
Two fluorescence energy transfer assays for phospholipid vesicle-vesicle fusion have been developed, one of which is also sensitive to vesicle aggregation. Using a combination of these assays it was possible to distinguish between vesicle aggregation and fusion as induced by poly(ethylene glycol) PEG 8000. The chromophores used were 1-(4′-carboxyethyl)-6-diphenyl-trans-1,3,5-hexatriene as fluorescent ‘donor’ and 1-(4′-carboxyethyl)-6-(4″-nitro)diphenyl-trans-1,3,5-hexatriene as ‘acceptor’. These acids were appropriately esterified giving fluorescent phospholipid and triacylglycerol analogues. At 20°C poly(ethylene glycol) 8000 (PEG 8000) caused aggregation of l-α-dipalmitoylphosphatidylcholine (DPPC) vesicles without extensive fusion up to a concentration of about 35% (w/w). Fusion occurred above this poly(ethylene glycol) concentration. The triacylglycerol probes showed different behaviour from the phospholipids: while not exchangeable through solution in the absence of fusogen, they appeared to redistribute between bilayers under aggregating conditions. DPPC vesicles aggregated with < 35% poly(ethylene glycol) could not be disaggregated by dilution, as monitored by the phospholipid probes. However, DPPC vesicles containing approx. 5% phosphatidylserine which had been aggregated by poly(ethylene glycol) could be disaggregated by either dilution or sonication. Phospholipid vesicles aggregated by low concentrations of poly(ethylene glycol) appear to fuse to multilamellar structures on heating above the lipid phase transition temperature.  相似文献   

17.
Preparation and some properties of giant liposomes and proteoliposomes   总被引:1,自引:0,他引:1  
Optimal conditions for formation of giant liposomes and proteoliposomes were investigated. A suspension of small unilamellar vesicles made of various phospholipids in a buffer of 0-3 M KCl, 0.1 mM EDTA, and 20 mM MOPS (pH 7.0) was subjected to a freeze-thaw treatment. Giant multilamellar liposomes of diameter ranging from 10 to 60 microns were found to form from phospholipid mixtures containing phosphatidylethanolamine as a major component and phosphatidylserine as a minor component. The concentration of KCl optimal for the giant vesicle formation was 30-500 mM. By applying a patch-pipette to a giant liposome, suitable conditions for obtaining a high-resistance (giga-ohm) seal were sought. It was found that use of a patch-pipette of relatively small tip diameter (less than 1 micron), the presence of divalent metal cations in the suspension medium and inflation of vesicles in a hypotonic solution facilitated giga-seal formation. In a suspension of asolectin (soybean phospholipid) vesicles which had been subjected to the freeze-thaw treatment, giant unilamellar vesicles were found. They could be held on the tip of a suction pipette and impaled with a microelectrode filled with an EGTA solution. Small unilamellar proteoliposomes were prepared by the cholate-dialysis method from asolectin and sarcoplasmic reticulum vesicles, and were subjected to a freeze-thaw cycle. When the ratio of exogenous phospholipid to protein was larger than 10, giant multilamellar vesicles were formed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The time-dependent accumulation of phosphatidyldimethylethanolamine in formaldehyde-induced vesicles obtained from a somatic cell hybrid line was investigated. From a number of considerations including a two-fold enrichment of cholesterol and sphingomyelin it was concluded that these vesicles were derived from the cell plasma membrane. A progressive depletion of phosphatidylcholine, the major vesicle phospholipid, was observed in cells supplemented for various time periods with dimethylethanolamine. This depletion was accompanied by a concomitant increase in the amount of lipid analog. The time-dependent alteration of the phospholipid polar head group in intact cells was almost identical to that observed in isolated plasma membrane vesicles, suggesting a rapid equilibration of the de novo synthesized phospholipid with the cell surface compartment. From the initial velocity rate, the time required for the phosphatidylcholine pool to double was about 12 h. Agarose-linked phospholipase A2 was used to measure the relative composition of choline- and dimethylethanolamine-phosphoglycerides in the outer surface of vesicles prepared from cells with different degrees of polar head group substitution. The gradual appearance of lysodimethylethanolamine lipid analog in vesicles treated with phospholipase A2 suggested an asymmetric distribution of the phospholipid between the interior and the exterior part of the vesicle. This asymmetry was maximal up to about 4 h following the addition of dimethylethanolamine to the culture medium and was of a transient nature as the lipid analog accumulated on both sides of the plasma membrane. Based on these measurements a fast followed by a slow translocation component could be distinguished with apparent doubling times of 7 and 43 h for the lipid analog, respectively. As the analog becomes the predominant cellular phospholipid a significant increase in the vesicle lipid fluidity was measured.  相似文献   

19.
The time-dependent accumulation of phosphatidyldimethylethanolamine in formaldehyde-induced vesicles obtained from a somatic cell hybrid line was investigated. From a number of considerations including a two-fold enrichment of cholesterol and sphingomyelin it was concluded that these vesicles were derived from the cell plasma membrane.A progressive depletion of phosphatidylcholine, the major vesicle phospholipid, was observed in cells supplemented for various time periods with dimethylethanolamine. This depletion was accompanied by a concomitant increase in the amount of lipid analog.The time-dependent alteration of the phospholipid polar head group in intact cells was almost identical to that observed in isolated plasma membrane vesicles, suggesting a rapid equilibration of the de novo synthesized phospholipid with the cell surface compartment. From the initial velocity rate, the time required for the phosphatidylcholine pool to double was about 12 h.Agarose-linked phospholipase A2 was used to measure the relative composition of choline- and dimethylethanolamine-phosphoglycerides in the outer surface of vesicles prepared from cells with different degrees of polar head group substitution. The gradual appearance of lysodimethylethanolamine lipid analog in vesicles treated with phospholipase A2 suggested an asymmetric distribution of the phospholipid between the interior and the exterior part of the vesicle. This asymmetry was maximal up to about 4 h following the addition of dimethylethanolamine to the culture medium and was of a transient nature as the lipid analog accumulated on both sides of the plasma membrane. Based on these measurements a fast followed by a slow translocation component could be distinguished with apparent doubling times of 7 and 43 h for the lipid analog, respectively. As the analog becomes the predominant cellular phospholipid a significant increase in the vesicle lipid fluidity was measured.  相似文献   

20.
Multinuclear (1H and 31P) nuclear magnetic resonance (NMR) spectroscopy and quasi-elastic light scattering have been used to characterize molecular aggregates formed in dilute sodium taurocholate--egg lecithin solutions. When mixed micelles (1.25 g/dL) are diluted with 150 mM aqueous sodium chloride, light-scattering measurements suggest a transformation from mixed micelles to unilamellar vesicle species. Decreased 1H NMR line widths for bile salt resonances are consistent with predominance of a monomer form. The concurrent appearance of a second phospholipid choline methyl resonance indicates two types of phospholipid environment in slow chemical exchange: this behavior is consistent with small unilamellar vesicles. The appearance of bilayer vesicles in dilute model bile solutions is confirmed by addition of a lanthanide shift reagent (Pr3+), which splits the 1H or 31P head-group peak into two components with distinct chemical shift sensitivities. These mixed micelle and vesicle aggregates are also distinguished by their susceptibility to the lipolytic enzyme phospholipase A2 from cobra venom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号