首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of the counterstain-contrasted fluorescent banding technique to canine chromosomes provided an improved capability to highlight specific heterochromatic regions and to produce well defined banding patterns both on mitotic and meiotic chromosomes. Triple staining with chromomycin A3 - distamycin A - DAPI revealed the occurrence of DA - DAPI positive heterochromatin in chromosomes 33, 36, 37, and 38. Pachytene nuclei present more favourable material for the detection of very small amounts of DA - DAPI material than mitotic division stages. Counterstain-enhanced chromomycin R-banding greatly facilitated chromosome identification. A standard R-band karyotype of Canis familiaris is proposed and described in some detail. DAPI - actinomycin D staining produced a QFH-type banding pattern and enhanced differentiation of some polymorphic regions.  相似文献   

2.
Numerous selective and differential staining techniques have been used to investigate the hierarchical organisation of the human genome. This investigation demonstrates the unique characteristics that are produced on fixed human chromosomes when sequential procedures involving restriction endonuclease TaqI, distamycin A (DA) and 4,6-diamidino-2-phenylindole (DAPI) are employed. TaqI produces extensive gaps in the heterochromatic regions associated with satellite II and III DNAs of human chromosomes 1, 9, 15, 16 and Y. DA/DAPI selectively highlights, as brightly fluorescent C-bands, the heterochromatin associated with the alpha, beta, satellite II and III DNAs of these chromosomes. When DA and DAPI are used on chromosomes before TaqI digestion, and then stained with Giemsa, the centromeric regions appear to be more resistant, producing a distinct C-banding pattern and gaps in the heterochromatin regions. Sequential use of the DA/DAPI technique after TaqI treatment produces a bright fluorescence on the remaining pericentromeric regions of chromosomes 1, 9, 16 and Y, which also displayed a cytochemically unique banding pattern. This approach has produced specific enhanced chromosomal bands, which may serve as tools to characterize genomic heterochromatin at a fundamental level.  相似文献   

3.
Recently, in addition to quinacrine staining, fluorochrome techniques have been developed which brilliantly stain other heterochromatic regions. Two of these staining techniques are Distamycin/DAPI (DA/DAPI) and D287/170. We stained the chromosomes of all species of great apes and 14 species of primates (48 individuals) using these three fluorochrome techniques. Only african apes and man show brilliant quinacrine staining while, man and all the great apes show brilliant DA/DAPI staining and only species belonging to the hominoidea (including the siamang) showed bright D287/170 staining. In the lower primates a medium level of DA/DAPI fluorescence was found in some species with large amount of pericentromeric heterochromatin. Brilliant DA/DAPI staining could represent a derived trait linking all great apes and humans, while D287/170 may link all hominoidea. Fluorochrome staining is believed to be correlated with some satellite DNA sequences. However, data available on the chromosome location of satellite DNAs in non-human primates were derived from buoyant density fractions resulting in cross hybridization and now are not considered reliable. Before making any correlation between fluorochrome staining and satellite DNAs in non human primates there is need of data onin situ hybridization with cloned DNA sequences on primate chromosomes. These data would help clarify the evolution and relationship of satellite DNAs and heterochromatin in primates.  相似文献   

4.
The chromosomes of the chimpanzee were stained with distamycin A/DAPI, which labels specific C-bands. Bright distamycin A/DAPI fluorescence was found in the heterochromatic regions of chromosomes 6, 11, 14 to 16, 18 to 20, and 23 and the Y. Lymphocyte cultures from chimpanzees were treated with low doses of 5-azacytidine during the last hours of culture. This cytosine analog induces highly distinct undercondensations in 28 heterochromatic regions of 19 chromosomes. These 5-azacytidine-sensitive regions are predominantly located in the terminal C-bands of the chromosomes. In vitro treatment with 5-azacytidine also preserves into the metaphase stage somatic pairings between the 5-azacytidine-sensitive heterochromatic regions in interphase nuclei. The homologies and differences regarding the chromosomal localization of distamycin A/DAPI-bright C-bands, 5-azacytidine-sensitive heterochromatin, 5-methylcytosine-rich DNA sequences, and satellite DNAs in the chimpanzee and man are discussed.  相似文献   

5.
Using G bands, some homologies between the chromosomes of Cebus apella (CAP) and human chromosomes are difficult to establish. To solve this problem, we analyzed these homologies by fluorescence in situ hybridization using human whole chromosome probes (ZOO-FISH). The results indicated that 1) the human probe for chromosome 2 partially hybridizes with CAP chromosomes 13 and 5, 2) the human probe for chromosome 3 partially hybridizes with CAP chromosomes 18 and 20, 3) the human probe for chromosome 9 partially hybridizes with CAP chromosome 19, and 4) the human probe for chromosome 14 hybridizes with the p-terminal and q-terminal regions of CAP chromosome 6. However, none of the human probes employed hybridized with the heterochromatic regions of CAP chromosomes. For this reason, we characterized the heterochromatic regions of CAP chromosomes and of the chromosomes of Pan troglodytes (PTR), to allow comparison between CAP, PTR, and human chromosomes using in situ digestion of fixed chromosomes with the restriction enzymes AluI, HaeIII, and RsaI and by fluorescent staining with DA/DAPI. The results show that 1) centromeric heterochromatin is heterogeneous in the three species studied and 2) noncentromeric heterochromatin is homogeneous within each of the three species, but is different for each species. Thus, centromeric heterochromatin undergoes a higher degree of variability than noncentromeric heterochromatin.  相似文献   

6.
7.
We describe the morphology and molecular organization of heterochromatin domains in the interphase nuclei, and mitotic and meiotic chromosomes, of Brassica rapa, using DAPI staining and fluorescence in situ hybridization (FISH) of rDNA and pericentromere tandem repeats. We have developed a simple method to distinguish the centromeric regions of mitotic metaphase chromosomes by prolonged irradiation with UV light at the DAPI excitation wavelength. Application of this bleached DAPI band (BDB) karyotyping method to the 45S and 5S rDNAs and 176 bp centromere satellite repeats distinguished the 10 B. rapa chromosomes. We further characterized the centromeric repeat sequences in BAC end sequences. These fell into two classes, CentBr1 and CentBr2, occupying the centromeres of eight and two chromosomes, respectively. The centromere satellites encompassed about 30% of the total chromosomes, particularly in the core centromere blocks of all the chromosomes. Interestingly, centromere length was inversely correlated with chromosome length. The morphology and molecular organization of heterochromatin domains in interphase nuclei, and in mitotic and meiotic chromosomes, were further characterized by DAPI staining and FISH of rDNA and CentBr. The DAPI fluorescence of interphase nuclei revealed ten to twenty conspicuous chromocenters, each composed of the heterochromatin of up to four chromosomes and/or nucleolar organizing regions.  相似文献   

8.
Males of Zophobas aff. confusus and Nyctobates gigas (Tenebrionidae) collected in the State of Pernambuco, Brazil, were studied through conventional staining, C-banding, silver nitrate impregnation (AgNO(3)), and the base specific fluorochromes CMA(3) and DAPI. Z. aff. confusus was found to have 2n = 20 (9+Xyp) while N. gigas exhibited 2n = 18 (8+neoXY). Large pericentromeric blocks of constitutive heterochromatin (CH) were detected throughout the autosomal complement of the two species, except in one autosomal pair of N. gigas in which no heterochromatic block was observed. The sex chromosomes of both species were almost totally heterochromatic. Double staining with CMA(3)/DA (distamycin) and DAPI/DA marked CH in Z. aff. confusus. However, DAPI staining was more intense. N. gigas was found to possess blocks of CH-positive CMA(3) and homogeneous DAPI. AgNO(3) staining also revealed differences between the two species. In Z. confusus an NOR was observed in the sexual bivalent Xyp and N. gigas was found to have an autosomal NOR.  相似文献   

9.
Cuscuta is a widely distributed genus of holoparasitic plants. Holocentric chromosomes have been reported only in species of one of its subgenera (Cuscuta subg. Cuscuta). In this work, a representative of this subgenus, Cuscuta approximata, was investigated looking for its mitotic and meiotic chromosome behaviour and the heterochromatin distribution. The mitotic chromosomes showed neither primary constriction nor Rabl orientation whereas the meiotic ones exhibited the typical quadripartite structure characteristic of holocentrics, supporting the assumption of holocentric chromosomes as a synapomorphy of Cuscuta subg. Cuscuta. Chromosomes and interphase nuclei displayed many heterochromatic blocks that stained deeply with hematoxylin, 4',6-diamidino-2-phenylindole (DAPI), or after C banding. The banded karyotype showed terminal or subterminal bands in all chromosomes and central bands in some of them. The single pair of 45S rDNA sites was observed at the end of the largest chromosome pair, close to a DAPI band and a 5S rDNA site. Two other 5S rDNA site pairs were found, both closely associated with DAPI bands. The noteworthy giant nuclei of glandular cells of petals and ovary wall exhibited large chromocentres typical of polytenic nuclei. The chromosomal location of heterochromatin and rDNA sites and the structure of the endoreplicated nuclei of C. approximata seemed to be similar to those known in monocentric nuclei, suggesting that centromeric organization has little or no effect on chromatin organization.  相似文献   

10.
Estimating percentage constitutive heterochromatin by flow cytometry.   总被引:1,自引:0,他引:1  
Flow cytometry is a powerful method for the assessment of both plant and animal genomes. One of the most interesting aspects is the analysis of chromatin structure. By using intercalating and base pair-specific fluorochromes, the chromatin structure in various cell cultures and microorganisms has been determined. In this study, several maize lines of known heterochromatic composition were analyzed. The nuclei of each line were isolated and stained with DAPI (base pair specific) and PI (intercalator) separately. For each maize line, the PI/DAPI ratio was determined. A significant negative correlation was observed between C-band number and PI/DAPI ratio (r = 0.920) and between percentage heterochromatin and PI/DAPI ratio (r = 0.997). Flow cytometry with use of the fluorochromes DAPI and PI was found to be a rapid and efficient method of determining heterochromatin amount in maize.  相似文献   

11.
Summary A series of partial inversions of the heterochromatic C-band of chromosome 9 have been stained with distamycin A plus 4,6-diamidino-2-phenyl-indol-2 HCl (DA/DAPI) and found to consist of three classes: (a) those in which only the C-band in the long arm fluoresces with DA/DAPI (these are the most frequent), (b) those in which only the C-band in the short arm fluoresces with DA/DAPI, and (c) those in which the C-bands in both arms fluoresce with DA/DAPI.There are also differences in the satellite DNA content of each type of inversion as measured by hybridisation in situ. Types (a) and (b) have satellite DNA contents similar to those of their normal homologues, while type (c) has a satellite DNA content almost double that of the normal homologue.It appears that DA/DAPI specifically stains heterochromatin that contains satellite DNA.The ability to distinguish these three types of inversion may help to resolve the question of the clinical significance of such inversions.  相似文献   

12.
The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Summary The utility of a newly synthesized chemical variation of DAPI (4-6-diamidino-2-phenyl-indole), D 287/170, for differential staining of constitutive heterochromatin in man is demonstrated. Direct staining of human chromosomes with D 287/170 results in brilliant fluorescence of the paracentromeric C-band of chromosome 9, of a proximal short-arm segment of chromosome 15 and of certain heterochromatic regions in the Y. Bright, but less conspicuous fluorescence is occassionally seen at the centromeres of other chromosomes. The staining differentiation obtained by D 287/170 is very distinct, and the intensity of the fluorescent light is unusually high. The new fluorochrome should prove particularly useful for detecting and analyzing human chromosome 9 heterochromatin at various stages of the cell cycle in normal and structurally altered chromosomes.  相似文献   

14.
The meaning of DAPI bands observed after C-banding and FISH procedures   总被引:1,自引:0,他引:1  
Abstract

Under specific technical conditions chromosome staining with 4′,6-diamidino-2-phenylindole (DAPI) permits characterization of heterochromatic regions as AT-rich (DAPI+) or AT-poor (DAPI?), especially when the chromosomes are counterstained with chromomycin A3 (CMA), which preferentially binds to GC-rich DNA. DAPI+ bands also often have been observed after C-banding or FISH. In these cases, however, it is not clear whether only AT-rich regions stain positively with DAPI or other heterochromatins with different base compositions also are stained. We evaluated the meaning of DAPI bands observed after C-banding and FISH using three plant species bearing different types of heterochromatin: DAPI+/CMA?, DAP?/CMA+ and DAPI0/CMA0 (neutral bands). Additional tests were performed using propidium iodide, a fluorochrome without preferential affinity for AT or GC. Our results indicate that AT-rich heterochromatin stains as DAPI+ bands after C-banding or FISH, but other kinds of heterochromatin also may be stained by DAPI.  相似文献   

15.
Characterization of human chromosomal constitutive heterochromatin   总被引:2,自引:0,他引:2  
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.  相似文献   

16.
Triple staining with fluorochromes (DA/DAPI/CMA) and C-banding were used to characterize the composition of Pseudonannolene strinatii heterochromatin. C-banding showed C+ bands of different labeling intensity on chromosomes 1 and 2 in some cells. Fluorochrome staining revealed DAPI+ regions corresponding to the C-banding pattern, indicating that the heterochromatin of this species is abundant in AT-rich sequences.  相似文献   

17.
T. Haaf  M. Schmid 《Chromosoma》1984,89(1):37-41
The mitotic and meiotic chromosomes of the American cyprinodont fish Poecilia sphenops var. melanistica were analysed. All 46 chromosomes are telocentric. By specific staining of the constitutive heterochromatin with C-banding and various AT-specific fluorochromes, the homomorphic chromosome pair 1 could be identified as sex chromosomes of the ZW/ZZ type. All female animals exhibit a W chromosome with a large region of telomeric heterochromatin that is not present in the Z chromosome. These sex chromosomes cannot be distinguished by conventional staining; they represent the first demonstration of sex chromosomes in fishes in an early stage of morphological differentiation. The W heterochromatin and the telomeric heterochromatin in the two autosomes 18 show a very bright fluorescence when stained with AT-specific fluorochromes. This allows the direct identification of the chromosomal sex by examining the interphase nuclei: females exhibit three, males only two brightly fluorescent heterochromatic chromocenters in their nuclei. The significance of these ZW/ ZZ sex chromosomes and their specific DNA sequences, the dose compensation of the Z-linked genes, and the experimental possibilities using sex-reversed ZW males are discussed.  相似文献   

18.
Tsai JH  Yan R  McKee BD 《Chromosoma》2011,120(4):335-351
Drosophila males undergo meiosis without recombination or chiasmata but homologous chromosomes pair and disjoin regularly. The X–Y pair utilizes a specific repeated sequence within the heterochromatic ribosomal DNA blocks as a pairing site. No pairing sites have yet been identified for the autosomes. To search for such sites, we utilized probes targeting specific heterochromatic regions to assay heterochromatin pairing sequences and behavior in meiosis by fluorescence in situ hybridization (FISH). We found that the small fourth chromosome pairs at heterochromatic region 61 and associates with the X chromosome throughout prophase I. Homolog pairing of the fourth chromosome is disrupted when the homolog conjunction complex is perturbed by mutations in SNM or MNM. On the other hand, six tested heterochromatic regions of the major autosomes proved to be largely unpaired after early prophase I, suggesting that stable homolog pairing sites do not exist in heterochromatin of the major autosomes. Furthermore, FISH analysis revealed two distinct patterns of sister chromatid cohesion in heterochromatin: regions with stable cohesion and regions lacking cohesion. This suggests that meiotic sister chromatid cohesion is incomplete within heterochromatin and may occur at specific preferential sites.  相似文献   

19.
Summary The heterogeneity of the C-band of human chromosome 1 has been evaluated using several selective staining methods: C-banding (CBG), distamycin A plus 4-6-diamidino-2-phenylindole (DA/DAPI) and Giemsa G-11 pattern following the treatment with the restriction endonucleases AluI and HaeIII. The bands produced by each method are characteristic but not identical. The total C-band is resistant to AluI treatment. The bands induced by HaeIII and the one stained by DA/DAPI are markedly similar but smaller than the C-band. The G-11 technique stains yet smaller regions than those of HaeIII and DA/DAPI. Depending on the expression of staining properties, the C-band of chromosome 1 usually consists of three subdivisions: the proximal, intermediate and distal regions, suggesting an extremely heterogeneous nature. The staining variations between different regions are further substantiated by studies of a reciprocal translocation where the proximal region and the remaining C-band of chromosome 1 are separate.  相似文献   

20.
Summary Variation of DA/DAPI intensity in the Yq12 band was observed in five amniotic cell specimens and one blood specimen from the father of one fetus. Three distinct classes of Yq heterochromatin were identified by distamycin A (DA) treatment of the cell cultures and various staining techniques. The heterochromatin in the Yq11.23 sub-band does not under-condense when exposed to DA, and shows pale fluorescence with quinacrine staining, positive C-banding, and bright fluorescence with DA/DAPI technique. This class of heterochromatin was consistently observed in all specimens studied. The other two classes of heterochromatin are in the Yq12 band. Both show undercondensation when exposed to DA, quinacrine-bright fluorescence, and positive C-banding; howover, one class of heterochromatin shows DA/DAPI-bright fluorescence and the other shows pale fluorescence. The size and banding intensity of the two classes of heterochromatin in Yq12 are variable. These results provide cytological evidence of heterogeneity within the Y heterochromatin region containing AT-rich DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号