首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
KRE6 (YPR159W) encodes a Golgi membrane protein required for normal beta-1,6-glucan levels in the cell wall. A functional Kre6p is necessary for cell wall protein accumulation in response to changing metabolic conditions. The product of the SED1 (YDR077W) gene is a stress-induced GPI-cell wall protein. Successful incorporation of HA-tagged Sed1p into the cell wall involves KRE6. The double-mutant sed1 kre6 has a reduced growth rate, increased flocculation and increased sensitivity to Zymolyase. A similar phenotype is found in mutants defective in glycosyl-phosphatidyl-insositol (GPI) anchor assembly. These findings support the theory that Kre6p could function as a transglucosylase that allows the incorporation of proteins with a GPI anchor into the cell wall.  相似文献   

2.
The protein trafficking machinery of eukaryotic cells is employed for protein secretion and for the localization of resident proteins of the exocytic and endocytic pathways. Protein transit between organelles is mediated by transport vesicles that bear integral membrane proteins (v-SNAREs) which selectively interact with similar proteins on the target membrane (t-SNAREs), resulting in a docked vesicle. A novel Saccharomyces cerevisiae SNARE protein, which has been termed Vti1p, was identified by its sequence similarity to known SNAREs. Vti1p is a predominantly Golgi-localized 25-kDa type II integral membrane protein that is essential for yeast viability. Vti1p can bind Sec17p (yeast SNAP) and enter into a Sec18p (NSF)-sensitive complex with the cis-Golgi t-SNARE Sed5p. This Sed5p/Vti1p complex is distinct from the previously described Sed5p/Sec22p anterograde vesicle docking complex. Depletion of Vti1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the Golgi. Temperature-sensitive mutants of Vti1p show a similar carboxypeptidase Y trafficking defect, but the secretion of invertase and gp400/hsp150 is not significantly affected. The temperature-sensitive vti1 growth defect can be rescued by the overexpression of the v-SNARE, Ykt6p, which physically interacts with Vti1p. We propose that Vti1p, along with Ykt6p and perhaps Sft1p, acts as a retrograde v-SNARE capable of interacting with the cis-Golgi t-SNARE Sed5p.  相似文献   

3.
SEC16 is required for transport vesicle budding from the ER in Saccharomyces cerevisiae, and encodes a large hydrophilic protein found on the ER membrane and as part of the coat of transport vesicles. In a screen to find functionally related genes, we isolated SED4 as a dosage- dependent suppressor of temperature-sensitive SEC16 mutations. Sed4p is an integral ER membrane protein whose cytosolic domain binds to the COOH-terminal domain of Sec16p as shown by two-hybrid assay and coprecipitation. The interaction between Sed4p and Sec16p probably occurs before budding is complete, because Sed4p is not found in budded vesicles. Deletion of SED4 decreases the rate of ER to Golgi transport, and exacerbates mutations defective in vesicle formation, but not those that affect later steps in the secretory pathway. Thus, Sed4p is important, but not necessary, for vesicle formation at the ER. Sec12p, a close homologue of Sed4p, also acts early in the assembly of transport vesicles. However, SEC12 performs a different function than SED4 since Sec12p does not bind Sec16p, and genetic tests show that SEC12 and SED4 are not functionally interchangeable. The importance of Sed4p for vesicle formation is underlined by the isolation of a phenotypically silent mutation, sar1-5, that produces a strong ER to Golgi transport defect when combined with sed4 mutations. Extensive genetic interactions between SAR1, SED4, and SEC16 show close functional links between these proteins and imply that they might function together as a multisubunit complex on the ER membrane.  相似文献   

4.
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall.  相似文献   

5.
The SED1 gene (YDR077W), coding for the major cell wall glycoprotein of Saccharomyces cerevisiae stationary-phase cells, contains two blocks of tandem repeat units located within two distinct regions of the nucleotide sequence. A PCR survey of the SED1 open reading frames (ORFs) of 186 previously uncharacterized grape must isolates of S. cerevisiae yielded 13 PCR profiles arising from different combinations of seven SED1 length variants in individuals homozygous or heterozygous for the gene. Comparison of the nucleotide sequences of a group of representatives of each of the seven length variants with those of S288C and the type strain, CBS1171, unequivocally identified them as SED1 alleles and provided evidence for the presence of two minisatellite-like sequences, variable in length, within the ORF of an S. cerevisiae gene. The segregation analyses of the SED1 length variants and other genetic markers in 13 isolates representative of each PCR profile suggested that molecular mechanisms involved in minisatellite expansion and contraction may be responsible for SED1 heterozygosities within a population of homothallic must isolates of S. cerevisiae.  相似文献   

6.
The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain–heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.  相似文献   

7.
Cellulose synthesis, but not its degradation, is generally thought to be required for plant cell growth. In this work, we cloned a dinoflagellate cellulase gene, dCel1, whose activities increased significantly in G2/M phase, in agreement with the significant drop of cellulose content reported previously. Cellulase inhibitors not only caused a delay in cell cycle progression at both the G1 and G2/M phases in the dinoflagellate Crypthecodinium cohnii, but also induced a higher level of dCel1p expression. Immunostaining results revealed that dCel1p was mainly localized at the cell wall. Accordingly, the possible role of cellulase activity in cell cycle progression was tested by treating synchronized cells with exogenous dCelp and purified antibody, in experiments analogous to overexpression and knockdown analyses, respectively. Cell cycle advancement was observed in cells treated with exogenous dCel1p, whereas the addition of purified antibody resulted in a cell cycle delay. Furthermore, delaying the G2/M phase independently with antimicrotubule inhibitors caused an abrupt and reversible drop in cellulase protein level. Our results provide a conceptual framework for the coordination of cell wall degradation and reconstruction with cell cycle progression in organisms with cell walls. Since cellulase activity has a direct bearing on the cell size, the coupling between cellulase expression and cell cycle progression can also be considered as a feedback mechanism that regulates cell size.  相似文献   

8.
We constructed hybrid proteins containing a plant α-galactosidase fused to various C-terminal moieties of the hypoxic Srp1p; this allowed us to identify a cell wall-bound form of Srp1p. We showed that the last 30 amino acids of Srp1p, but not the last 16, contain sufficient information to signal glycosyl-phosphatidylinositol anchor attachment and subsequent cell wall anchorage. The cell wall-bound form was shown to be linked by means of a β1,6-glucose-containing side-chain. Pmt1p enzyme is known as a protein-O-mannosyltransferase that initiates the O-glycosidic chains on proteins. We found that a pmt1 deletion mutant was highly sensitive to zymolyase and that in this strain the α-galactosidase–Srp1 fusion proteins, an α-galactosidase–Sed1 hybrid protein and an α-galactosidase–α-agglutinin hybrid protein were absent from both the membrane and the cell wall fractions. However, the plasma membrane protein Gas1p still receives its glycosyl-phosphatidylinositol anchor in pmt1 cells, and in this mutant strain an α-galactosidase–Cwp2 fusion protein was found linked to the cell wall but devoid of β1,6-glucan side-chain, indicating an alternative mechanism of cell wall anchorage.  相似文献   

9.
The ERD2 gene, which encodes the yeast HDEL (His-Asp-Glu-Leu) receptor, is essential for growth (Semenza, J. C., K. G. Hardwick, N. Dean, and H. R. B. Pelham. 1990. Cell. 61:1349-1357; Lewis, M. J., D. J. Sweet, and H. R. B. Pelham. 1990. Cell. 61:1359-1363). SED5, when present in multiple copies, enables cells to grow in the absence of Erd2p. Sequence analysis of SED5 reveals no significant homology with ERD2 or other known genes. We have raised antibodies to Sed5p which specifically recognize a 39-kD integral membrane protein. A stretch of hydrophobic residues at the COOH terminus is predicted to hold Sed5p on the cytoplasmic face of intracellular membranes. Cells that are depleted of Sed5p are unable to transport carboxypeptidase Y to the Golgi complex, and stop growing after a dramatic accumulation of ER membranes and vesicles. We conclude that the SED5 gene is essential for growth and that Sed5p is required for ER to Golgi transport. When Sed5p is overexpressed the efficiency of ER to Golgi transport is reduced, vesicles accumulate, and cellular morphology is perturbed. Immunofluorescence studies reveal that the bulk of Sed5p is not found on ER membranes but on punctate structures throughout the cytoplasm, the number of which increases upon SED5 overexpression. We suggest that Sed5p has an essential role in vesicular transport between ER and Golgi compartments and that it may itself cycle between these organelles.  相似文献   

10.
Saccharomyces cerevisiae NUD1 gene codes for a spindle pole body component and nud1 temperature-sensitive mutants arrest at 38°C in late anaphase with a tendency for lysis. We found that addition of 10% sorbitol to the medium complemented the lytic phenotype, and determination of colony-forming units evidenced the viability of nud1 cells for at least 48 hours at 38°C. The protein amount in cell-free medium increased at 38°C, and evidence is presented that intact nud1 cells exported proteins in amounts 10-fold higher compared wild type strains. The observed high amounts of extracellular acid phosphatase, invertase, and bacterial β-galactosidase suggested the export of secretory proteins. This was evidenced by construction of nudlsec mutants and the observation that interruption of the secretory pathway resulted in absence of protein export at 38°C. Proteins were exported through a cell wall showing increased porosity at 38°C. The extracellular release of Gas1p and the facilitated transformability with plasmid DNA of nud1 cells indicated alternations of their cell walls at 38°C. The export of proteins depends on oxidative phosphorylation as evidenced by disruption of the COX10 gene. Experiments with inhibitors of mitochondrial functions showed that the synthesis of adenosine triphosphate, but not the electron transport along the respiratory chain, has a key role in the export of proteins. The data show that the phenotype of S. cerevisiae nud1 mutants is characterized by enhanced export of secretory proteins and that the passage of proteins through the walls of nud1 cells is an active process.  相似文献   

11.
The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.  相似文献   

12.
The Dynamics of Golgi Protein Traffic Visualized in Living Yeast Cells   总被引:16,自引:13,他引:3       下载免费PDF全文
We describe for the first time the visualization of Golgi membranes in living yeast cells, using green fluorescent protein (GFP) chimeras. Late and early Golgi markers are present in distinct sets of scattered, moving cisternae. The immediate effects of temperature-sensitive mutations on the distribution of these markers give clues to the transport processes occurring. We show that the late Golgi marker GFP-Sft2p and the glycosyltransferases, Anp1p and Mnn1p, disperse into vesicle-like structures within minutes of a temperature shift in sec18, sft1, and sed5 cells, but not in sec14 cells. This is consistent with retrograde vesicular traffic, mediated by the vesicle SNARE Sft1p, to early cisternae containing the target SNARE Sed5p. Strikingly, Sed5p itself moves rapidly to the endoplasmic reticulum (ER) in sec12 cells, implying that it cycles through the ER. Electron microscopy shows that Golgi membranes vesiculate in sec18 cells within 10 min of a temperature shift. These results emphasize the dynamic nature of Golgi cisternae and satisfy the kinetic requirements of a cisternal maturation model in which all resident proteins must undergo retrograde vesicular transport, either within the Golgi complex or from there to the ER, as anterograde cargo advances.  相似文献   

13.
14.
To develop a high efficiency Candida antarctica lipase B (CALB) yeast display system, we linked two CALB genes fused with Sacchromyces cerevisiae cell wall protein genes, the Sed1 and the 3′-terminal half of Sag1, separately by a 2A peptide of foot-and-mouth disease virus (FMDV) in a single open reading frame. The CALB copy number of recombinant strain KCSe2ACSa that harbored the ORF was identified, and the quantity of CALB displayed on the cell surface and the enzyme activity of the strain were measured. The results showed that the fusion of multiple genes linked by 2A peptide was translated into two independent proteins displayed on the cell surface of stain KCSe2ACSa. Judging from the data of immunolabeling assay, stain KCSe2ACSa displayed 94?% CALB-Sed1p compared with stain KCSe1 that harbored a single copy CALB-Sed1 and 64?% CALB-Sag1p compared with stain KCSa that harbored a single copy CALB-Sag1 on its surface. Besides, strain KCSe2ACSa possessed 170?% hydrolytic activity and 155?% synthetic activity compared with strain KCSe1 as well as 144?% hydrolytic activity and 121?% synthetic activity compared with strain KCSa. Strain KCSe2ACSa even owned 124?% hydrolytic activity compared with strain KCSe2 that harbored two copies CALB-Sed1. The heterogeneous glycosylphosphatidylinositol-anchored proteins co-displaying yeast system mediated by FMDV 2A peptide was shown to be an effective method for improving the efficiency of enzyme-displaying yeast biocatalysts.  相似文献   

15.
16.
The ERD2 gene of Saccharomyces cerevisiae encodes the HDEL receptor that sorts ER proteins; it is essential for growth. In the absence of Erd2p the Golgi apparatus is both functionally and morphologically perturbed. Here we describe the isolation of four SED genes (suppressors of the erd2-deletion) which, when present in multiple copies, allow cells to grow in the absence of ERD2. The suppressed strains secrete the ER protein BiP and their internal membranes show a variety of morphological abnormalities. Sequence analysis indicates that all these SED genes encode membrane proteins: SED1 encodes a probable cell surface glycoprotein; SED2 is identical to SEC12, a gene required for the formation of ER-derived transport vesicles; SED4 encodes a protein whose cytoplasmic domain is 45% identical to that of Sec12p; SED3 is DPM1, the structural gene for dolichol-P-mannose synthase. We suggest that the absence of ERD2 causes an imbalance between membrane flow into and out of the Golgi apparatus, and that the SED gene products can compensate for this either by slowing transport from the ER or by stimulating vesicle budding from Golgi membranes.  相似文献   

17.
A Pichia pastoris cell-surface display system was constructed using the Sed1 anchor system that has been developed in Saccharomyces cerevisiae. Candida antarctica lipase B (CALB) was used as the model protein and was fused to an anchor that consisted of 338 amino acids of Sed1. The resulting fusion protein CALBSed1 was expressed under the control of the alcohol oxidase 1 promoter (pAOX1). Immunofluorescence microscopy of immunolabeled Pichia pastoris revealed that CALB was displayed on the cell surface. Western blot analysis showed that the fusion protein CALBSed1 was attached covalently to the cell wall and was highly glycosylated. The hydrolytic activity of the displayed CALB was more than 220 U/g dry cells after 120 h of culture. The displayed protein also exhibited a higher degree of thermostability than free CALB.  相似文献   

18.
Summary Early responses of legume roots toRhizobium inoculation include new cell wall synthesis and induction of some putative wall protein genes. Although the predicted amino acid sequences of several early nodulins indicate that they encode proline-rich proteins (PRPs), the proteins have been neither isolated nor has their presence been demonstrated in cell walls. We have used polyclonal antibodies against PRP2 from soybean to identify and localize proline-rich proteins in pea nodules. On immunoblots, several PRPs were detected, ranging from less than 20 kDa to 110 kDa. Immunocytochemistry revealed that tissues of the vascular cylinder contained abundant PRPs, particularly in the secondary cell walls of xylem elements and phloem fibers. PRPs were also found within the primary wall of the nodule endodermis and within Casparian strips of the vascular endodermis. Of symbiotic importance, PRPs were a prominent component of the infection thread matrix in newly infected root cells and in nodules. PRPs were also secreted by cells in the uninfected nodule parenchyma, where they were found occluding intercellular spaces outside the middle lamella. Despite structural conservation among members of this class of cell wall proteins, PRPs were targeted to distinct layers of the extracellular matrix dependent upon cell type, and may thus play separate roles in the biology of plant cells. The putative functions and the potential for interactions between PRPs and other wall polymers are discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine tetraacetate - GRP glycine-rich protein - PCR polymerase chain reaction - PGA polygalacturonic acid - PMSF phenylmethylsulfonyl fluoride - PRP proline-rich protein - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - Tris tris(hydroxylmethyl) aminomethane - Tween 20 polyoxyethylene sorbitan monolaurate Dedicated to the memory of Professor John G. Torrey  相似文献   

19.
Glycosylphosphatidylinositol (GPI)-anchored proteins are essential for normal cellular morphogenesis and have an additional role in mediating cross-linking of glycoproteins to cell wall glucan in yeast cells. Although many GPI-anchored proteins have been characterized in Saccharomyces cerevisiae, none have been reported for well-characterized GPI-anchored proteins in Schizosaccharomyces pombe to date. Among the putative GPI-anchored proteins in S. pombe, four α-amylase homologs (Aah1p-Aah4p) have putative signal sequences and C-terminal GPI anchor addition signals. Disruption of aah3 + resulted in a morphological defect and hypersensitivity to cell wall-degrading enzymes. Biochemical analysis showed that Aah3p is an N-glycosylated, GPI-anchored membrane protein localized in the membrane and cell wall fractions. Conjugation and sporulation were not affected by the aah3 + deletion, but the ascal wall of aah3Δ cells was easily lysed by hydrolases. Expression of aah3 alleles in which the conserved aspartic acid and glutamic acid residues required for hydrolase activity were replaced with alanine residues failed to rescue the morphological and ascal wall defects of aah3Δ cells. Taken together, these results indicate that Aah3p is a GPI-anchored protein and is required for cell and ascal wall integrity in S. pombe.  相似文献   

20.
Using immunocytochemical methods, at both the light and electron microscopic level, we have investigated the spatial and temporal distribution of lipid transfer protein 1 (LTP1) epitopes during the induction of somatic embryogenesis in explants of Arabidopsis thaliana. Immunofluorescence labelling demonstrated the presence of high levels of LTP1 epitopes within the proximal regions of the cotyledons (embryogenic regions) associated with particular morphogenetic events, including intense cell division activity, cotyledon swelling, cell loosening and callus formation. Precise analysis of the signal localization in protodermal and subprotodermal cells indicated that cells exhibiting features typical of embryogenic cells were strongly labelled, both in walls and the cytoplasm, while in the majority of meristematic-like cells no signal was observed. Staining with lipophilic dyes revealed a correlation between the distribution of LTP1 epitopes and lipid substances within the cell wall. Differences in label abundance and distribution between embryogenic and non-embryogenic regions of explants were studied in detail with the use of immunogold electron microscopy. The labelling was strongest in both the outer periclinal and anticlinal walls of the adaxial, protodermal cells of the proximal region of the cotyledon. The putative role(s) of lipid transfer proteins in the formation of lipid lamellae and in cell differentiation are discussed. Key message Occurrence of lipid transfer protein 1 epitopes in Arabidopsis explant cells accompanies changes in cell fate and may be correlated with the deposition of lipid substances in the cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号