首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ko HM  Park YM  Jung B  Kim HA  Choi JH  Park SJ  Lee HK  Im SY 《FEBS letters》2005,579(11):2369-2375
Platelet-activating factor (PAF) augments angiogenesis by promoting the synthesis of various angiogenic factors, via the activation of NF-kappaB. In this study, we investigated the role of the matrix metalloproteinase (MMP)-9, in PAF-induced angiogenesis. PAF increased mRNA expression, protein synthesis, and MMP-9 activity in ECV304 cells, in a NF-kappaB-dependent manner. PAF increased MMP-9 promoter activity in ECV304, which was inhibited by WEB2107, and NF-kappaB inhibitors. Transfected NF-kappaB subunits, p65 or/and p50, increased luciferase activity in the reporter plasmid MMP-9, resulting in an increase not only of MMP-9 luciferase activity, but also of mRNA expression in MMP-9. MMP-9 or NF-kappaB inhibitors significantly inhibited PAF-induced angiogenesis, in a dose-dependent manner, in an in vivo mouse Matrigel implantation model. In a parallel to the Matrigel implantation study, MMP-9 or NF-kappaB inhibitors inhibited PAF-induced sprouting of porcine pulmonary arterial endothelial cells. These data indicate that NF-kappaB-dependent MMP-9 plays a key role in PAF-induced angiogenesis.  相似文献   

2.
3.
Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-κB, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of IκBα and the nuclear translocation/activation of NF-κB. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-κB. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-κB inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-κB and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.  相似文献   

4.
Platelet-activating factor (PAF), 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, is a potent phospholipid mediator and has been reported to be localized in atherosclerotic plaque. However, its role in the progression of atherosclerosis remains unclear. In the present study, we investigated the role of PAF in the production of matrix metalloproteinase (MMP) in primary vascular smooth muscle cells (VSMCs). When rat aortic primary VSMCs were stimulated with PAF (1 nmol/l), the expressions of MMP-2 mRNA and protein, but not of MMP-9, were significantly increased, and these upregulations were markedly attenuated by inhibiting extracellular signal-regulated kinases (ERKs) using molecular and pharmacological inhibitors, but not by using inhibitors of p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Likewise, ERK phosphorylation was markedly enhanced in PAF-stimulated VSMCs, and this was attenuated by WEB2086, but not by EGF receptor inhibitor, demonstrating the specificity of PAF receptor (PAFR) in PAF-induced ERK phosphorylation. In immunofluorescence studies, β-arrestin2 in PAF-stimulated VSMCs colocalized with PAFR and phosphorylated ERK (P-ERK). Coimmunoprecipitation results suggest that β-arrestin2-bound PAFRs existed as a complex with P-ERK. In addition, PAF-induced ERK phosphorylation and MMP-2 production were significantly attenuated by β-arrestin2 depletion. Taken together, the study shows that PAF enhances MMP-2 production in VSMCs via a β-arrestin2-dependent ERK signaling pathway.  相似文献   

5.
Summary The signaling pathways leading to extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) activation by N-formyl-Met-Leu-Phe (fMLP) or platelet activating factor (PAF) in human neutrophils were examined. Previously, we found that changes of intracellular Ca2+ ([Ca ) stimulated by PAF and fMLP were due to Ca2+ influx and internal Ca2+ release, respectively. To further determine the mechanism of MAPK activation and its relation with Ca2+ influx, blood from healthy human volunteers was taken by venous puncture. Human polymorphonuclear cells (PMNs) were isolated and incubated with protein kinase C (PKC) inhibitor Calphostin C, PKC- isoform inhibitor GF109203X, phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002, phospholipase C (PLC) inhibitor U73122, phospholipase A2 (PLA2) inhibitor Aristolochic acid, store-operated calcium (SOC) channel inhibitor SKF96365, or extracellular calcium chelator EGTA followed by fMLP or PAF treatment. Phosphorylation of ERK p38 was determined by immunoblotting analysis. Our data indicate that neutrophil MAPK signaling pathways mediated by fMLP and PAF are different. PAF-induced ERK phosphorylation is mediated by PI3K, PKC, PLA2, PLC, and extracellular calcium, whereas fMLP-induced ERK phosphorylation does not involve the PKC- isoform and extracellular calcium. PAF-induced p38 phosphorylation involves PLA2, whereas fMLP-induced p38 activation is PLC dependent.  相似文献   

6.
Chronic obstructive pulmonary disease (COPD) is an inflammatory process characterized by airway mucus hypersecretion. Previous studies have reported that lipopolysaccharides (LPS) stimulate mucin 5AC (MUC5AC) production via epidermal growth factor receptor (EGFR) in human airway cells. Moreover, this production was shown to depend on the expression and activity of matrix metalloproteinase 9 (MMP-9), which is increased in COPD patients’ serum. In the present study we investigated the signaling pathway mediating LPS-stimulated secretion and activation of MMP-9, and the regulatory effects of this pathway on the production of MUC5AC in the human airway cells NCI-H292. Using specific inhibitors, we found that LPS-stimulated cells secreted and activated MMP-9 via EGFR. Our results also indicate that signaling events downstream of EGFR involved PI3K-dependent activation of Rac1, which mediated the NADPH-generated reactive oxygen species responsible for MMP-9 secretion and activation. Finally, we observed that EGFR/PI3K/Rac1/NADPH/ROS/MMP-9 regulate MUC5AC production in LPS-challenged NCI-H292 cells.  相似文献   

7.
Lee JG  Lee SH  Park DW  Bae YS  Yun SS  Kim JR  Baek SH 《FEBS letters》2007,581(4):787-793
Phosphatidic acid (PA) is implicated in pathophysiological processes associated with cellular signaling events and inflammation, which include the expressional regulation of numerous genes. Here, we show that PA stimulation increases matrix metalloproteinase-9 (MMP-9) expression in macrophages through tumor necrosis factor (TNF)-alpha signaling. We performed antibody array analysis on proteins from macrophages stimulated with PA. PA was found to induce the production of TNF-alpha, but not of TNF receptor (TNFR)1 and TNFR2 in a time-dependent manner and stimulated significant, though delayed, MMP-9 expression. PA induced the phosphorylations of both ERK1/2 and p38, but not of c-jun amino-terminal kinase. Moreover, only ERK1/2 inhibition by U0126 suppressed PA-induced TNF-alpha production and MMP-9 expression. Neutralizing TNF-alpha, TNFR1 or TNFR2 antibodies significantly suppressed PA-induced MMP-9 expression, suggesting that the production of TNF-alpha in response to PA preceded the expression of MMP-9. Moreover, lipopolysaccharide-induced PA also led to TNF-alpha release and resulted in MMP-9 expression. Taken together, these observations suggest that PA may play a role in MMP-9 regulation through ERKs/TNF-alpha/TNFRs-dependent signaling pathway.  相似文献   

8.
Pancreatic ductal epithelial cells (PDECs) were induced to differentiate into insulin-producing cells by hepatocyte growth factor (HGF) in our previous study, but the mechanism through which this induction occurs is still unknown. HGF is a ligand that activates a tyrosine kinase encoded by the c-Met proto-oncogene. This activation is followed by indirect activation of multiple downstream signal transduction pathways (including MAPKs and the PI3K/AKT signaling pathways) that initiate various biological effects. Therefore, we speculated that the differentiation of PDECs is through either the MAPK signaling pathway or the PI3K/AKT signaling pathway. To test this hypothesis, isolated PDECs from adult rats were stimulated by adding HGF to their medium for 28 days. Then, the expression levels of several protein kinases, including MAPKs (ERK1/2, p38, and JNK) and AKT, were determined by Western blotting to determine if specific protein kinases are activated in these pathways. Subsequently, re-isolated from adult rats and cultured PDECs were pre-treated with specific inhibitors of proteins shown to be activated in these signaling pathways; these cells were then induced to differentiate by the addition of HGF. The expression levels of protein kinases were determined by Western blotting, and the differentiation rate of insulin-positive cells was determined by flow cytometry. The change of PDEC differentiation rates were compared between the groups in which cells with or without inhibitors pretreatment to determine the specific signaling pathway(s) that may be involved in HGF-induced differentiation of PDECs. After isolating PDECs and stimulating them with HGF for 28 days, the expression levels of phosphorylated ERK1/2 as well as total and phosphorylated AKT of cultured cells were significantly increased compared to the normal control group (< 0.05), suggesting that the signaling pathways involving ERK1/2 and Akt (MEK-ERK and PI3K-AKT) are activated during HGF-induced PDEC differentiation. MEK1/2 or PI3K inhibitors were separately added to the culture medium of PDECs pre-treated with HGF. These results show that compared to the HGF-treated group, the differentiation rate of insulin-positive cells was significantly decreased in the HGF/LY294002 (PI3K inhibitor) group (13.47 ± 1.57% vs. 33.47 ± 1.34%, < 0.05); however, the differentiation rate of insulin-positive cells was not significantly different in the HGF/PD98059 (MEK1/2 inhibitor) group. These data suggest that HGF induces PDECs to differentiate into insulin-producing cells through the PI3K/AKT signaling pathway.  相似文献   

9.
We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary venous SMCs as our model system to study the effects and mechanisms of action of PAF on SMC proliferation. We found that PAF induced SMC proliferation in a dose-dependent manner. PAF also stimulated activation of both ERK and p38 but not c-Jun NH(2) terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. PAF (10 nM) induced phosphorylation of epidermal growth factor receptor (EGFR). Specific inhibition of EGFR by AG-1478 and by the expression of a dominant-negative EGFR mutant in SMCs attenuated PAF-stimulated cell proliferation. Inhibition of heparin-binding EGF-like growth factor (HB-EGF) release by CRM-197 and inhibition of matrix metalloproteinases (MMP) by GM-6001 abolished PAF-induced MAP kinase activation and cell proliferation. Increased alkaline phosphatase (AP) activity after PAF treatment in AP-HB-EGF fusion construct-transfected SMCs indicated that PAF induced the release of HB-EGF within 1 min. Gelatin zymography data showed that PAF stimulated MMP-2 activity and MMP-9 activity within 1 min. These results suggest that PAF promotes pulmonary vascular SMC proliferation via transactivation of EGFR through MMP activation and HB-EGF, resulting in p38 and ERK activation and that EGFR transactivation is essential for the mitogenic effect of PAF in pulmonary venous SMC.  相似文献   

10.
The Ras/Raf/extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling pathway is known to cross-talk with other signaling pathways, including phosphatidylinositol 3-kinase (PI3K)/Akt pathway. However, the role of PI3K in ERK-1/2 activation induced by tyrosine kinase receptors was not fully understood. Here, we report that two structurally distinct PI3K inhibitors, wortmannin and LY294002, inhibited insulin-induced activation of ERK1/2 but had no effect on EGF-induced activation of ERK1/2 in hepatocellular carcinoma BEL-7402 and SMMC-7721 cells, breast cancer MCF-7 cells, and prostate cancer LNCaP cells. Although protein kinase C could act as a mediator between PI3K and ERK1/2, protein kinase C inhibitor chelerythrine chloride did not inhibit insulin-induced ERK1/2 activation. Both insulin- and EGF-induced ERK1/2 activation are strictly dependent on Ras activation, however, wortmannin only inhibited insulin-induced, but not EGF-induced Ras activation. These results indicate that PI3K plays different roles in the activation of Ras/ERK1/2 signaling by insulin and EGF, and that insulin-stimulated, but not EGF-stimulated, ERK1/2 and Akt signalings diverge at PI3K.  相似文献   

11.
We have shown earlier that platelet-activating factor (PAF) causes apoptosis in enterocytes via a mechanism that involves Bax translocation to mitochondria, followed by caspase activation and DNA fragmentation. Herein we report that, in rat small intestinal epithelial cells (IEC-6), these downstream apoptotic effects are mediated by a PAF-induced inhibition of the phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt) signaling pathway. Treatment with PAF results in rapid dephosphorylation of Akt, phosphoinositide-dependent kinase-1, and the YXXM p85 binding motif of several proteins and redistribution of Akt-pleckstrin homology domain-green fluorescent protein, i.e., an in vivo phosphatidylinositol (3,4,5)-trisphosphate sensor, from membrane to cytosol. The proapoptotic effects of PAF were inhibited by both n-3 and n-6 polyunsaturated fatty acids but not by a saturated fatty acid palmitate. Indomethacin, an inhibitor of prostaglandin biosynthesis, did not influence the baseline or PAF-induced apoptosis, but 2-bromopalmitate, an inhibitor of protein palmitoylation, inhibited all of the proapoptotic effects of PAF. Our data strongly suggest that an inhibition of the PI 3-kinase/Akt signaling pathway is the main mechanism of PAF-induced apoptosis in enterocytes and that polyunsaturated fatty acids block this mechanism very early in the signaling cascade independently of any effect on prostaglandin synthesis, and probably directly via an effect on protein palmitoylation.  相似文献   

12.
Epigallocatechin-3-gallate (EGCG), a tea polyphenol, inhibits the proliferation of many cancer cell lines; however, the antiproliferative mechanism(s) are not well-characterized. The objective of this study is to identify the cellular signaling mechanism(s) responsible for the antiproliferative effects of EGCG in the PC-3 prostate cancer cell line. EGCG inhibited PC-3 cell proliferation in a concentration-dependent manner with an IC(50) value of 39.0 microM, but had no effect on the proliferation of a nontumorigenic prostate epithelial cell line (RWPE-1). Treatment of PC-3 cells with EGCG (0-50 microM) resulted in time and concentration-dependent activation of the extracellular signal-regulated kinase (ERK1/2) pathway. EGCG treatment did not induce ERK1/2 activity in RWPE-1 cells. The activation of ERK1/2 by EGCG was not inhibited using PD98059, a potent inhibitor of mitogen-activated protein kinase kinase (MEK), the immediate upstream kinase responsible for ERK1/2 activation; suggesting a MEK-independent signaling mechanism. Pretreatment of PC-3 cells with a phosphoinositide-3 kinase (PI3K) inhibitor partially reduced both EGCG-induced ERK1/2 activation and the antiproliferative effects of this polyphenol. These results suggest that ERK1/2 activation via a MEK-independent, PI3-K-dependent signaling pathway is partially responsible for the antiproliferative effects of EGCG in PC-3 cells.  相似文献   

13.
Inhibition of glycogen synthase kinase-3beta (GSK3beta) is one of the mechanisms by which phosphatidylinositol 3-kinase (PI3K) activation protects neurons from apoptosis. Here, we report that inhibition of ERK1/2 increased the basal activity of GSK3beta in cortical neurons and that both ERK1/2 and PI3K were required for brain-derived neurotrophic factor (BDNF) suppression of GSK3beta activity. Moreover, cortical neuron apoptosis induced by expression of recombinant GSK3beta was inhibited by coexpression of constitutively active MKK1 or PI3K. Activation of both endogenous ERK1/2 and PI3K signaling pathways was required for BDNF to block apoptosis induced by expression of recombinant GSK3beta. Furthermore, cortical neuron apoptosis induced by LY294002-mediated activation of endogenous GSK3beta was blocked by expression of constitutively active MKK1 or by BDNF via stimulation of the endogenous ERK1/2 pathway. Although both PI3K and ERK1/2 inhibited GSK3beta activity, neither had an effect on GSK3beta phosphorylation at Tyr-216. Interestingly, PI3K (but not ERK1/2) induced the inhibitory phosphorylation of GSK3beta at Ser-9. Significantly, coexpression of constitutively active MKK1 (but not PI3K) still suppressed neuronal apoptosis induced by expression of the GSK3beta(S9A) mutant. These data suggest that activation of the ERK1/2 signaling pathway protects neurons from GSK3beta-induced apoptosis and that inhibition of GSK3beta may be a common target by which ERK1/2 and PI3K protect neurons from apoptosis. Furthermore, ERK1/2 inhibits GSK3beta activity via a novel mechanism that is independent of Ser-9 phosphorylation and likely does not involve Tyr-216 phosphorylation.  相似文献   

14.
15.
We have previously shown that liposomes coated with a neoglycolipid constructed from mannotriose and dipalmitoylphosphatidylethanolamine (Man3-DPPE) activate peritoneal macrophages to induce enhanced expression of co-stimulatory molecules and MHC class II. In this study, we investigated the signaling pathways activated by the Man3-DPPE-coated liposomes (OMLs) in a murine macrophage cell line, J774A.1. In response to OML stimulation, ERK among MAPKs was clearly and transiently phosphorylated in J774 cells. ERK phosphorylation was also induced by treatment of the cells with Man3-DPPE and Man3-BSA, but not by uncoated liposomes. In addition, rapid and transient phosphorylation of Akt and Src family kinases (SFKs) was observed in response to OMLs. OML-induced ERK phosphorylation was inhibited by specific inhibitors of PI3K and SFKs, and OML-induced Akt phosphorylation was inhibited by a inhibitor of SFKs. Therefore, OMLs may activate the PI3K/Akt pathway through phosphorylation of Src family kinases to induce ERK activation.  相似文献   

16.
Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta   总被引:1,自引:0,他引:1  
Smad ubiquitination regulatory factor 2 (Smurf2), a ubiquitin ligase for Smads, plays critical roles in the regulation of transforming growth factor-beta (TGF-beta)-Smad signaling via ubiquitin-dependent degradation of Smad2 and Smad7. We found that TGF-beta stimulates Smurf2 expression. TGF-beta activated the Smurf2 promoter in a TGF-beta responsive cell lines, whereas IL-1alpha, PDGF and epidermal growth factor did not. TGF-beta-mediated Smurf2 promoter activation was inhibited by Smad7 or an activin receptor-like kinase 5 inhibitor but not by dominant negative Smad or disruption of Smad-binding elements in the promoter. Moreover, inhibition of the phosphatidil inositol 3 kinase (PI3K)/Akt pathway suppressed TGF-beta-mediated Smurf2 induction. These results suggest that TGF-beta stimulates Smurf2 expression by Smad-independent pathway such as PI3K/Akt pathway via TGF-beta receptor.  相似文献   

17.
Interleukin-6 (IL-6) is involved in angiogenesis. However, the underlying mechanisms are unknown. Using human cerebral endothelial cell (HCEC), we report for the first time that IL-6 triggers HCEC proliferation and migration in a dose-dependent manner, specifically associated with enhancement of VEGF expression, up-regulated and phosphorylated VEGF receptor-2 (KDR), and stimulated MMP-9 secretion. We investigated the signal pathway of IL-6/IL-6R responsible for KDR's regulation. Pharmacological inhibitor of PI3K failed to inhibit IL-6-mediated VEGF overexpression, while blocking ERK1/2 with PD98059 could abolish IL-6-induced KDR overexpression. Further, neutralizing endogenous VEGF attenuated KDR expression and phosphorylation, suggesting that IL-6-induced KDR activation is independent of VEGF stimulation. MMP-9 inhibitor GM6001 significantly decreases HCEC proliferation and migration (p<0.05), indicating the crucial function of MMP-9 in promoting angiogenic changes in HCECs. We conclude that IL-6 triggers VEGF-induced angiogenic activity through increasing VEGF release, up-regulates KDR expression and phosphorylation through activating ERK1/2 signaling, and stimulates MMP-9 overexpression.  相似文献   

18.
19.
The activation of mitogen-activated protein kinase (MAP kinase) and the regulation of cyclooxygenase 2 (COX-2) were investigated in the human endometrial adenocarcinoma cell line HEC-1B by treatment with platelet-activating factor (PAF) and hCG. Pre-treatment of the cells with both oestradiol and medroxyprogesterone acetate was required for MAP kinase activation and COX-2 expression to respond to PAF and hCG. PAF-induced MAP kinase activation was sensitive to MAP kinase kinase (MEK) inhibitor, PD098059, and phosphatidylinositol-3-OH kinase (PI3K) inhibitor, wortmannin. In contrast, hCG-induced MAP kinase activation was sensitive to PD098059 and protein kinase A inhibitor, H-89, but not to wortmannin. PAF-induced COX-2 expression was insensitive to PD098059 but sensitive to wortmannin, whereas hCG-induced COX-2 expression was sensitive to PD098059 and H-89 but insensitive to wortmannin. 8-(4-chlorophenylthio)-cAMP, a potent cAMP analogue, induced activation of MAP kinase and expression of COX-2. These results indicate that MAP kinase is activated with PAF and hCG in HEC-1B cells. In addition, COX-2 expression is stimulated through the MAP kinase activation pathway with hCG and the wortmannin sensitive pathway with PAF in HEC-1B cells. These results also imply that protein kinase A remains upstream of hCG-induced activation of MAP kinase in HEC-1B cells.  相似文献   

20.
Lim EJ  Lee SH  Lee JG  Chin BR  Bae YS  Kim JR  Lee CH  Baek SH 《FEBS letters》2006,580(18):4533-4538
CpG oligodeoxunucleotide (ODN) plays an important role in immune cell function. The present study examined whether temporal control of toll-like receptor (TLR)-9 by CpG ODN can regulate the expression of matrix metalloproteinase-9 (MMP-9). CpG ODN induced the release of tumor necrosis factor (TNF)-alpha and the expression of TNF receptor (TNFR)-II, but not of TNFR-I, in a time-dependent manner and stimulated significant, though delayed, MMP-9 expression. The endosomal acidification inhibitors, chloroquine or bafilomycin A, inhibited CpG ODN-induced TNF-alpha, TNFR-II, and MMP-9 expression. CpG ODN induced the phosphorylation of Akt, and the inhibition of Akt by LY294002 suppressed CpG ODN-induced TNF-alpha, TNFR-II, and MMP-9 expressions. Moreover, neutralizing TNF-alpha antibody significantly suppressed CpG ODN-induced MMP-9 expression, suggesting the involvement of TNF-alpha. These observations suggest that CpG ODN may play important roles in macrophage activation by regulating the expression of MMP-9 via a TLR-9/Akt/TNF-alpha-dependent signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号