首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophils are required for the development of arthritis, and their migration into the synovial tissue coincides with the onset of clinical disease. Synovial neutrophil numbers also correlate with rheumatoid arthritis disease activity and severity. We hypothesized that certain arthritis severity genes regulate disease via the regulation of neutrophil migration into the joint. This hypothesis was tested in the synovial-like air pouch model injected with carrageenan using arthritis-susceptible DA and arthritis-resistant F344 rats. DA had nearly 3-fold higher numbers of exudate neutrophils compared with F344 (p < 0.001). Five DA.F344(QTL) strains congenic for severity loci and protected from autoimmune arthritis were studied. Only DA.F344(Cia4) (chromosome 7) and DA.F344(Cia6) (chromosome 8) congenics had significantly lower exudate neutrophil counts compared with DA. TNF-alpha levels were 2.5-fold higher in DA exudates as compared with F344 exudates, and that difference was accounted for by the Cia4 locus. Exudate levels of NO, a known inhibitor of neutrophil chemotaxis, were higher in F344, compared with DA, and that difference was accounted for by Cia6. This is the first time that non-MHC autoimmune arthritis loci are found to regulate three central components of the innate immune response implicated in disease pathogenesis, namely neutrophil migration into an inflammatory site, as well as exudate levels of TNF-alpha and NO. These observations underscore the importance of identifying the Cia4 and Cia6 genes, and suggest that they should generate useful novel targets for development of new therapies.  相似文献   

2.
The susceptibility to collagen-induced arthritis in the highly susceptible DBA/1 mouse has earlier been shown to be partly controlled by the MHC class II gene Aq. To identify susceptibility loci outside of MHC, we have made crosses between DBA/1 and the less susceptible B10.Q strain, both expressing the MHC class II gene Aq. Analysis of 224 F2 intercross mice with 170 microsatellite markers in a genome-wide scan suggested 4 quantitative trait loci controlling arthritis susceptibility located on chromosomes 6, 7, 8, and 10. The locus on chromosome 6 (Cia6), which was associated with arthritis onset, yielded a logarithm of odds score of 4.7 in the F2 intercross experiment and was reproduced in serial backcross experiments. Surprisingly, the DBA/1 allele had a recessive effect leading to a delay in arthritis onset. The suggestive loci on chromosomes 7 and 10 were associated with arthritis severity rather than onset, and another suggestive locus on chromosome 8 was most closely associated with arthritis incidence. The loci on chromosomes 7, 8, and 10 all appeared to contain disease-promoting alleles derived from the DBA/1 strain. Interestingly, most of the identified loci were situated in chromosomal regions that are homologous to regions in the rat genome containing susceptibility genes for arthritis; the mouse Cia6 locus is homologous with the rat Cia3, Pia5, Pia2, and Aia3; the locus on chromosome 7 (Cia7) is homologous with the rat Cia2; and the locus on chromosome 10 (Cia8) is homologous with the rat Cia4.  相似文献   

3.
Rat Chromosome 10 (RNO10) harbors Cia5, a non-MHC quantitative trait locus (QTL) that regulates the severity of type II collagen-induced arthritis (CIA) in DAxF344 and DAxBN F2 rats. CIA is an animal model with many features that resemble rheumatoid arthritis. To facilitate analysis of Cia5 independently of the other CIA regulatory loci on other chromosomes, DA recombinant QTL speed congenic rats, DA.F344(Cia5), were generated. These QTL congenic rats have a large chromosomal segment containing Cia5 (interval size < or =80.1 cM) from CIA-resistant F344 rats introgressed into their genome. Phenotypic analyses of these rats for susceptibility and severity of CIA confirmed that Cia5 is an important disease-modifying locus. CIA severity was significantly lower in the Cia5 congenic rats than in DA controls. We also generated DA Cia5 speed sub-congenic rats, DA.F344(Cia5a), which had a smaller segment of the F344 genome, Cia5a, comprising only the distal q-telomeric end (interval size < or = 22.5 cM) of Cia5, introgressed into their genome. DA.F344(Cia5a) sub-congenic rats also exhibited reduced CIA disease severity compared with the parental DA rats. The regulatory effects in both congenic strains were sex influenced. The disease-ameliorating effect of the larger fragment, Cia5, was greater in males than in females, but the effect of the smaller fragment, Cia5a, was greater in females. We also present an improved genetic linkage map covering the Cia5/Cia5a region, which we have integrated with two rat radiation hybrid maps. Comparative homology analysis of this genomic region with mouse and human chromosomes was also undertaken. Regulatory loci for multiple autoimmune/inflammatory diseases in rats (RNO10), mice (MMU11), and humans (HSA17 and HSA5q23-q31) map to chromosomal segments homologous to Cia5 and Cia5a.  相似文献   

4.
Cia5 is a locus on rat chromosome 10 which regulates the severity of collagen- and pristane-induced arthritis (CIA and PIA). To refine the region toward positional identification, Cia5 subcongenic strains were generated and studied in PIA and CIA. The protective effect of the telomeric locus Cia5a was confirmed in both models. A second arthritis severity locus (Cia5d) was identified within the most centromeric portion of Cia5. DA.F344(Cia5d) rats had a significantly lower median arthritis severity index in PIA, but not in CIA, compared with DA. On histologic analyses DA.F344(Cia5a) and DA.F344(Cia5d) congenics with PIA preserved a nearly normal joint architecture compared with DA, including significant reduction in synovial hyperplasia, pannus, angiogenesis, inflammatory infiltration, bone and cartilage erosions. Cia5 and Cia5a synovial levels of IL-1beta mRNA were reduced. Although both DA.F344(Cia5) and DA.F344(Cia5a) rats were protected in CIA, the arthritis scores of DA.F344(Cia5) were significantly higher than those of DA.F344(Cia5a), suggesting the existence of a third locus where F344-derived alleles centromeric from Cia5a contribute to increased arthritis severity. The existence of the third locus was further supported by higher levels of autoantibodies against rat type II collagen in DA.F344(Cia5) congenics compared with DA.F344(Cia5a). Our results determined that Cia5 contains three major arthritis severity regulatory loci regulating central events in the pathogenesis of arthritis, and differentially influencing CIA and PIA. These loci are syntenic to regions on human chromosomes 17q and 5q implicated in the susceptibility to rheumatoid arthritis, suggesting that the identification of these genes will be relevant to human disease.  相似文献   

5.
The central region of mouse Chromosome (Chr) 8, containing the myodystrophy (myd) locus, is syntenic with human Chr 4q28-qter. The human neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) maps to Chr 4q35, and myd has been proposed as a mouse homolog of FSHD. We have employed a comparative mapping approach to investigate this relationship further by extending the mouse genetic map of this region. We have ordered 12 genes in a single cross, 8 of which have human homologs on 4q28-qter. The results confirm a general relationship between the most distal genes on human 4q and the most proximal genes in the mouse 8 syntenic region. Despite chromosomal rearrangements of syntenic groups in this region, conservation of gene order is maintained between the group of genes in the human telomeric region of 4q35 and MMU8. Furthermore, this conserved telomeric HSA4q35 syntenic group maps proximal to the myd mutation and is flanked by genes with homologs on HSA8p22. At the proximal boundary of the MMU8 linkage group we have identified a single 300-kb YAC containing the genes Frgl and Pcml, which have human homologs on 4q35 and 8p22, respectively. Thus, this YAC spans an evolutionary chromosomal breakpoint. As well as providing clues about chromosomal evolution, this map of the FSHD syntenic mouse region should prove invaluable in the isolation of candidate genes for this disease. Received: 20 January 1998 / Accepted: 10 April 1998  相似文献   

6.
By use of rat cDNA probes and a panel of cell hybrids segregating rat chromosomes, the genes encoding three pyridoxal 5-phosphate (PLP)-dependent decarboxylases—namely, DOPA-decarboxylase (Ddc), glutamic acid decarboxylase 1 and 2 (Gad1 and Gad2)—were assigned to rat Chromosomes (Chrs) 14, 3, and 17, respectively. If one takes into account chromosome localizations in the human and the mouse, the present results (i) show that a synteny group is retained on rat Chr 14, human Chr 7, and mouse Chr 11 (Ddc); (ii) strengthen the homology relation known between rat Chr 3 and human and mouse Chrs 2 (Gad1); (iii) suggest that rat Chr 17 has no extensive homology to any human chromosome; and (iv) suggest the order (Prl, Fdp)-Tpl2-Gad2 on the rat Chr 17.  相似文献   

7.
The mouse homologs of the Huntington's disease (HD) gene and 17 other human Chromosome (Chr) 4 loci (including six previously unmapped) were localized by use of an interspecific cross. All loci mapped in a continuous linkage group on mouse Chr 5, distal to En2 and Il6, whose human counterparts are located on Chr y. The relative order of the loci on human Chr 4 and mouse Chr 5 was maintained, except for a break between D5H4S115E and Idua/rd, with relocation of the latter to the opposite end of the map. The mouse HD homolog (Hdh) mapped within a cluster of seven genes that were completely linked in our data set. In human these loci span a1.8 Mb stretch of human 4p 16.3 that has been entirely cloned. To date, there is no phenotypic correspondence between human and mouse mutations mapping to this region of synteny conservation.  相似文献   

8.
To enhance the comparative map for human Chromosome (Chr) 13, we identified clones for human genes and anonymous loci that cross-hybridized with their mouse homologs and then used linkage crosses for mapping. Of the clones for four genes and twelve anonymous loci tested, cross-hybridization was found for six, COL4A1, COL4A2, D13S26, D13S35, F10, and PCCA. Strong evidence for homology was found for COL4A1, COL4A2, D13S26, D13S35, and F10, but only circumstantial homology evidence was obtained for PCCA. To genetically map these mouse homologs (Cf10, Col4a1, Col4a2, D14H13S26, D8H13S35, and Pcca-rs), we used interspecific and intersubspecific mapping panels. D14H13S26 and Pcca-rs were located on the distal portion of mouse Chr 14 extending by 30 cM the conserved linkage between human Chr 13 and mouse Chr 14, assuming that Pcca-rs is the mouse homolog of PCCA. By contrast, Cf10, Col4a1, Col4a2, and D8H13S35 mapped near the centromere of mouse Chr 8, defining a new conserved linkage. Finally, we identified either a closely linked sequence related to Col4a2, or a recombination hot-spot between Col4a1 and Col4a2 that has been conserved in humans and mice.  相似文献   

9.
Thomas  James W. 《Mammalian genome》2003,14(10):673-678
Comparative mapping and sequencing of the mouse and human genomes have defined large, conserved chromosomal segments in which gene content and order are highly conserved. These regions span megabase-sized intervals and together comprise the vast majority of both genomes. However, the evolutionary relationships among the small remaining portions of these genomes are not as well characterized. Here we describe the sequencing and annotation of a 341-kb region of mouse Chr 2 containing nine genes, including biliverdin reductase A (Blvra), and its comparison with the orthologous regions of the human and rat genomes. These analyses reveal that the known conserved synteny between mouse Chromosome (Chr) 2 and human Chr 7 reflects an interval containing one gene (Blvra/BLVRA) that is, at most, just 34 kb in the mouse genome. In the mouse, this segment is flanked proximally by genes orthologous to human chromosome 15q21 and distally by genes orthologous to human Chr 2q11. The observed differences between the human and mouse genomes likely resulted from one or more rearrangements in the rodent lineage. In addition to the resulting changes in gene order and location, these rearrangements also appear to have included genomic deletions that led to the loss of at least one gene in the rodent lineage. Finally, we also have identified a recent mouse-specific segmental duplication. These finding illustrate that small genomic regions outside the large mouse–human conserved segments can contain a single gene as well as sequences that are apparently unique to one genome. The nucleotide sequence data reported in this paper have been submitted to GenBank and assigned the accession numbers AC074224 and AC074041.  相似文献   

10.
To determine chromosome positions for 10 mouse phospholipase C (PLC) genes, we typed the progeny of two sets of genetic crosses for inheritance of restriction enzyme polymorphisms of each PLC. Four mouse chromosomes, Chr 1, 11, 12, and 19, contained single PLC genes. Four PLC loci, Plcb1, Plcb2, Plcb4, and Plcg1, mapped to three sites on distal mouse Chr 2. Two PLC genes, Plcd1 and Plcg2, mapped to distinct sites on Chr 8. We mapped the human homologs of eight of these genes to six chromosomes by analysis of human × rodent somatic cell hybrids. The map locations of seven of these genes were consistent with previously defined regions of conserved synteny; Plcd1 defines a new region of homology between human Chr 3 and mouse Chr 8. Received: 24 January 1996 / Accepted: 2 April 1996  相似文献   

11.
The human autosomal dominant neuromuscular disorder facioscapulohumeral muscular dystrophy (FSHD) is associated with deletions within a complex tandem DNA repeat (D4Z4) on Chromosome (Chr) 4q35. The molecular mechanism underlying this association of FSHD with DNA rearrangements is unknown, and, thus far, no gene has been identified within the repeat. We isolated a gene mapping 100 kb proximal to D4Z4 (FSHD Region Gene 1:FRG1), but were unable to detect any alterations in total or allele-specific mRNA levels of FRG1 in FSHD patients. Human Chr 4q35 exhibits synteny homology with the region of mouse Chr 8 containing the gene for the myodystrophy mutation (myd), a possible mouse homolog of FSHD. We report the cloning of the mouse gene (Frg1) and show that it maps to mouse Chr 8. Using a cross segregating the myd mutation and the European Collaborative Interspecific Backcross, we showed that Frg1 maps proximal to the myd locus and to the Clc3 and Ant1 genes. Received: 24 September 1996 / Accepted: 7 February 1997  相似文献   

12.
The development and refinement of the rat genome map is a prerequisite for a continued qualified and fruitful use of this model system for the study of complex traits. In two distinct rat cancer models, recurrent amplification affecting the proximal region of rat Chr 4 was detected. To further characterize this region, we turned to the evolutionarily conserved chromosome segments in human Chr 7 and mouse Chrs 5 and 6 to identify functional and positional candidate genes. By means of single- and dual-color FISH on metaphase, prometaphase, and interphase chromatin, 15 genes in rat Chr 4q11-q23 (Cdk5, Hgf, Dmtf1, Abcb1, Cyp51, Cdk6, Tac1, Asns, Cav1, Met, Wnt2, Cftr, Smoh, Braf, Arhgef5) were mapped and aligned. In the course of this work, six cancer-related rat genes were isolated de novo and partly sequenced. Ten loci were also mapped by FISH in the mouse. The map provides the framework for a more detailed genetic characterization of individual tumor amplicons, but may also be valuable for the analysis of this region in other rat models of human complex disease. In addition, our data facilitate the analysis of events in mammalian chromosomal evolution affecting the region. In a comparison with human sequence data, we found that there is considerable conservation in this region both in gene order and in distances between genes. There is a single evolutionary breakpoint between rat and mouse and two between rat and human. Since our analysis shows that the three breaks all occurred in different positions, they must be independent of one another. The data tend to support the notion that the genomic configuration in rat Chr 4 is ancestral compared with that in humans and mice. Received: 7 June 2001 / Accepted: 7 August 2001  相似文献   

13.
By means of somatic cell, hybrids segregating rat chromosomes, we determined the chromosome localization of three rat 1 family integrin genes. ITGB1 was assigned to Chromosome (Chr) 19, ITGA4 to Chr 3, and ITGA5 to Chr 7. These chromosome assignments reveal or confirm homology between two pairs of rat and human chromosomes (rat Chr 3-human Chr 2; rat Chr 7-human Chr 12).  相似文献   

14.
The plasma membrane Na/H exchanger plays an essential role in regulating intracellular pH and Na+ concentration and has been implicated in several pathophysiological conditions, including essential hypertension and congenital secretory diarrhea. Four isoforms of the Na/H exchanger encoded by separate genes have recently been identified by cDNA cloning. To map their locations in the human and rat genomes, rat isoform-specific cDNA probes were hybridized to Southern filters containing panels of somatic cell hybrids that segregate either human or rat chromosomes. The rat Nhe1 gene was assigned to Chromosome (Chr) 5, extending the homology with human chromosome 1p that has previously been shown to contain the human NHE1 gene. The genes encoding the NHE-2 and NHE-4 isoforms were syntenic in the two species and assigned to rat Chr 9 and human Chr 2. A single Nhe3 gene was detected in rat and assigned to Chr 1. In contrast, although evidence to date has suggested a single human NHE3 gene on Chr 5, two NHE3 genes, NHE3A and NHE3B, were identified and assigned to Chrs 10 and 5, respectively. Interestingly, rat Chr 1 has recently been found to carry a gene controlling systolic blood pressure upon sodium loading in stroke-prone, spontaneously hypertensive rats. Thus, this and other evidence implicates rat Nhe3 as a possible candidate gene in this disease process.  相似文献   

15.
Adjuvant arthritis (AA) serves as an excellent model for human rheumatoid arthritis. AA is readily inducible in certain rat strains, but not in others. Susceptibility/resistance to AA is determined by multiple factors. Among the genetic factors, both MHC and non-MHC genes contribute to arthritis susceptibility, and specific quantitative trait loci show association with the severity of the disease. Differential T-cell proliferative and cytokine responses, as well as antibody responses, to heat-shock proteins are evident when comparing AA-susceptible and AA-resistant rats. In addition, neuroendocrine factors and the housing environment can further modulate arthritis susceptibility/severity in particular rat strains.  相似文献   

16.
Mouse Chromosome (Chr) 7 distal to band F3 on the physical map is known to be subject to imprinting, maternal duplication (MatDp) of the region leading to a late embryonic lethality, while paternal duplication (PatDp) causes death in utero before 11.5 dpc. Using a new mouse reciprocal translocation T(7;11)65H to produce MatDp for distal Chr 7, we have mapped the region subject to imprinting more precisely to bands 7F4/F5 on the cytogenetic map. Fluorescence in situ hybridization (FISH) studies on mitotic and meiotic chromosomes of a T65H heterozygote show that the imprinted gene Igf2 is located in the same region. This was confirmed by the finding that embryos with MatDp of bands 7F4/F5 did not express Igf2. We suggest that other members of the imprinted domain containing Igf2, namely Mash2, H19, Ins2, and p57 K1P2 , are also located in 7F4/F5 and that some or all of these genes may be responsible for the two imprinting lethalities seen with MatDp and PatDp for this region. Received: 13 October 1996 / Accepted: 8 December 1996  相似文献   

17.
Proximal mouse Chromosome (Chr) 16 shows conserved synteny with human Chrs 16, 8, 22, and 3. The mouse Chr 16/human Chr 22 conserved synteny region includes the DiGeorge/Velocardiofacial syndrome region of human Chr 22q11.2. A physical map of the entire mouse Chr 16/human Chr 22 region of conserved synteny has been constructed to provide a substrate for gene discovery, genomic sequencing, and animal model development. A YAC contig was constructed that extends ca. 5.4 Mb from a region of conserved synteny with human Chr 8 at Prkdc through the region conserved with human Chr 3 at DVL3. Sixty-one markers including 37 genes are mapped with average marker spacing of 90 kb. Physical distance was determined across the 2.6-Mb region from D16Mit74 to Hira with YAC fragmentation. The central region from D16Jhu28 to Igl-C1 was converted into BAC and PAC clones, further refining the physical map and providing sequence-ready template. The gene content and borders of three blocks of conserved linkage between human Chr 22q11.2 mouse Chr 16 are refined. Received: 4 November 1998 / Accepted: 21 December 1998  相似文献   

18.
Inbred LEW/N rats are relatively susceptible, while histocompatible inbred F344/N rats are relatively resistant to development of a wide variety of inflammatory diseases in response to a range of pro-inflammatory stimuli. In a LEW/N vs. F344/N F2 intercross, we identified a quantitative trait locus (QTL) on Chr 10 that protects in a dominant fashion against the exudate volume component of innate inflammation in the F344/N rat, as well as a suggestive QTL on Chr 2 near the Fibrinogen cluster region. The exudate volume linkage region on Chr 10 may be similar to one of the multiple regions found to link to inflammatory arthritis phenotypes in other crosses. The suggestive linkage on Chr 2 has not been previously reported and does not seem to contribute to this phenotype in the same manner as the QTL on Chr 10. These findings are consistent with the hypothesis that the innate exudate volume trait is a sub-phenotype of more complex inflammatory phenotypes, such as arthritis, and genes within the Chr 10 linkage region could account for differences in this non-specific acute phase component of the inflammatory response. Since the rat Chr 10 exudate volume linkage region we have identified is syntenic with a region of human Chr 17 that has been shown to link to a variety of autoimmune/inflammatory diseases, including insulin-dependent diabetes mellitus, multiple sclerosis, and psoriasis, identification of genes within this linkage region will shed light on genes relevant to the earliest inflammatory component and to susceptibility and resistance to such human autoimmune/inflammatory diseases. Received: 4 August 1998 / Accepted: 4 December 1998  相似文献   

19.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

20.
Myodystrophy (myd), an autosomal recessive mutation of the mouse characterized by progressive weakness and dystrophic muscle histology, maps to the central portion of Chromosome (Chr) 8 (Lane et al. J. Hered 67, 135, 1976). This portion of Chr 8 contains the genes for a mitochondrial uncoupling protein (Ucp) and kallikrein (Kal3), which map to distal 4q in the human, providing evidence for a segment of homology. Characteristics of the myd phenotype coupled with this homology suggest that myd may be a mouse homolog of facioscapulohumeral muscular dystrophy (FSHD), which maps to human 4q35. We have confirmed and expanded the region of mouse 8-human 4 homology by generating a map of Chr 8 in an interspecific backcross of C57BL/6J and a partially inbred strain derived from M. spretus. The map is comprised of the genes for Ucp, coagulation factor XI (Cf11), and chloride channel 5 (Clc5), all of which have homologs on distal human 4q, 15 microsatellite loci, and the membrane cofactor protein pseudogene (Mcp-ps). To place myd in the genetic map, 75 affected progeny from an intersubspecific backcross of animals heterozygous for myd with Mus musculus castaneus were genotyped with Chr 8 microsatellite loci. The mutation maps between D8Mit30 and D8Mit75, an interval that is flanked by genes with human homologs at distal 4q. These results are consistent with the possibility that myd is the mouse homolog of FSHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号