首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed the proteome of grapevine (Vitis vinifera) leaves 24, 48 and 96 h post infection (hpi) with the downy mildew pathogen Plasmopara viticola. Total proteins were separated on 2-DE gels. By MS analysis, we identified 82 unique grapevine proteins differentially expressed after infection. Upregulated proteins were often included in the functional categories of general metabolism and stress response, while proteins related to photosynthesis and energy production were mostly downregulated. As expected, the activation of a defense reaction was observed more often at the late time point, consistent with the establishment of a compatible interaction. Most proteins involved in resistance were isoforms of different PR-10 pathogenesis-related proteins. Although > 50 differentially expressed protein isoforms were observed at 24 and 96 hpi, only 18 were detected at 48 hpi and no defense-related proteins were among this group. This profile suggests a transient breakdown in defense responses accompanying the onset of disease, further supported by gene expression analyses and by a western blot analysis of a PR-10 protein. Our data reveal the complex modulation of plant metabolism and defense responses during compatible interactions, and provide insight into the underlying molecular processes which may eventually yield novel strategies for pathogen control in the field.  相似文献   

2.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump, which was found in the plant vacuolar membrane. Two cDNA clones (OVP1 and OVP2) encoding the V-PPase were isolated from cultured rice (Oryza sativa L.) cells and subsequently sequenced. The sequence analysis has revealed thatOVP1 contains 2316 nucleotides of open reading frame (ORF) and 362 nucleotides of the 3-untranslated region, whereasOVP2 comprises 2304 nucleotides of ORF and 312 nucleotides of the 3-untranslated region. The nucleotide sequences of ORF ofOVP1 andOVP2 are 80.7% identical, and their 5- and 3-untranslated regions have 39.4% and 48.4% identity, respectively. The polypeptides encoded by the ORF ofOVP1 andOVP2 contain 771 and 767 amino acids, respectively, and the sequences of the OVP proteins are very similar to those of other V-PPases, which are shown to have 85–91% homology. Chromosomal mapping by RFLP techniques demonstrates that OVP1 and OVP2 are isoforms encoded by different genes. BothOVP1 andOVP2 are mapped on the same chromosome (chromosome 6) to a distance of ca. 90 cM. Northern analysis indicates that theOVP1 andOVP2 are also expressed in intact rice plants andOVP2 shows higher expression in the calli than the roots and shoots, compared toOVP1. These results show that at least two genes encoding the V-PPases are present in rice genome and their expressions are probably regulated in a different manner.  相似文献   

3.
Plant vacuolar H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1) utilizes inorganic pyrophosphate (PPi) as an energy source to generate a H+ gradient potential for the secondary transport of ions and metabolites across the vacuole membrane. In this study, functional roles of arginine residues in mung bean V-PPase were determined by site-directed mutagenesis. Alignment of amino-acid sequence of K+-dependent V-PPases from several organisms showed that 11 of all 15 arginine residues were highly conserved. Arginine residues were individually substituted by alanine residues to produce R-->A-substituted V-PPases, which were then heterologously expressed in yeast. The characteristics of mutant variants were subsequently scrutinized. As a result, most R-->A-substituted V-PPases exhibited similar enzymatic activities to the wild-type with exception that R242A, R523A, and R609A mutants markedly lost their abilities of PPi hydrolysis and associated H+-translocation. Moreover, mutation on these three arginines altered the optimal pH and significantly reduced K+-stimulation for enzymatic activities, implying a conformational change or a modification in enzymatic reaction upon substitution. In particular, R242A performed striking resistance to specific arginine-modifiers, 2,3-butanedione and phenylglyoxal, revealing that Arg242 is most likely the primary target residue for these two reagents. The mutation at Arg242 also removed F- inhibition that is presumably derived from the interfering in the formation of substrate complex Mg2+-PPi. Our results suggest accordingly that active pocket of V-PPase probably contains the essential Arg242 which is embedded in a more hydrophobic environment.  相似文献   

4.
5.
6.
H+-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) drives proton transport against an electrochemical potential gradient by hydrolyzing pyrophosphate (PPi) and is found in various endomembranes of higher plants, bacteria, and some protists. H+-PPase contains seven highly conserved lysines. We examined the functional roles of these lysines, which are, for the most part, found in the cytosolic regions of mung bean H+-PPase by site-directed mutagenesis. Construction of mutants that each had a cytosolic and highly conserved lysine substituted with an alanine resulted in dramatic drops in the PPi hydrolytic activity. The effects caused by ions on the activities of WT and mutant H+-PPases suggest that Lys-730 may be in close proximity to the Mg2+-binding site, and the great resistance of the K694A and K695A mutants to fluoride inhibition suggests that these lysines are present in the active site. The modifier fluorescein 5'-isothiocyanate (FITC) labeled a lysine at the H+-PPase active site but did not inhibit the hydrolytic activities of K250A, K250N, K250T, and K250S, which suggested that Lys-250 is essential for substrate binding and may be involved in proton translocation. Analysis of tryptic digests indicated that Lys-711 and Lys-717 help maintain the conformation of the active site. Proteolytic evidence also demonstrated that Lys-250 is the primary target of trypsin and confirmed its crucial role in H+-PPase hydrolysis.  相似文献   

7.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase) uses PP(i) as an energy donor and requires free Mg(2+) for enzyme activity and stability. To determine the catalytic domain, we analyzed charged residues (Asp(253), Lys(261), Glu(263), Asp(279), Asp(283), Asp(287), Asp(723), Asp(727), and Asp(731)) in the putative PP(i)-binding site and two conserved acidic regions of mung bean V-PPase by site-directed mutagenesis and heterologous expression in yeast. Amino acid substitution of the residues with alanine and conservative residues resulted in a marked decrease in PP(i) hydrolysis activity and a complete loss of H(+) transport activity. The conformational change of V-PPase induced by the binding of the substrate was reflected in the susceptibility to trypsin. Wild-type V-PPase was completely digested by trypsin but not in the presence of Mg-PP(i), while two V-PPase mutants, K261A and E263A, became sensitive to trypsin even in the presence of the substrate. These results suggest that the second acidic region is also implicated in the substrate hydrolysis and that at least two residues, Lys(261) and Glu(263), are essential for the substrate-binding function. From the observation that the conservative mutants K261R and E263D showed partial activity of PP(i) hydrolysis but no proton pump activity, we estimated that two residues, Lys(261) and Glu(263), might be related to the energy conversion from PP(i) hydrolysis to H(+) transport. The importance of two residues, Asp(253) and Glu(263), in the Mg(2+)-binding function was also suggested from the trypsin susceptibility in the presence of Mg(2+). Furthermore, it was found that the two acidic regions include essential common motifs shared among the P-type ATPases.  相似文献   

8.
Vacuolar proton pumping pyrophosphatase (H+-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PPi hydrolysis. A histidine-specific modifier, diethylpyrocarbonate (DEPC), could substantially inhibit enzymic activity and H+-translocation of vacuolar H+-PPase in a concentration-dependent manner. Absorbance of vacuolar H+-PPase at 240 nm was increased upon incubation with DEPC, demonstrating that an N-carbethoxyhistidine moiety was probably formed. On the other hand, hydroxylamine, a reagent that can deacylate N-carbethoxyhistidine, could reverse the absorption change at 240 nm and partially restore PPi hydrolysis activity as well. The pK a of modified residues of the enzyme was determined to be 6.4, a value close to that of histidine. Thus, we speculate that inhibition of vacuolar H+-PPase by DEPC possibly could be attributed to the modification of histidyl residues on the enzyme. Furthermore, inhibition of vacuolar H+-PPase by DEPC follows pseudo-first-order rate kinetics. A reaction order of 0.85 was calculated from a double logarithmic plot of the apparent reaction constant against DEPC concentration, suggesting that the modification of one single histidine residue on the enzyme suffices to inhibit vacuolar H+-PPase. Inhibition of vacuolar H+-PPase by DEPC changes V max but not K m values. Moreover, DEPC inhibition of vacuolar H+-PPase could be substantially protected against by its physiological substrate, Mg2+-PPi. These results indicated that DEPC specifically competes with the substrate at the active site and the DEPC-labeled histidine residue might locate in or near the catalytic domain of the enzyme. Besides, pretreatment of the enzyme with N-ethylmaleimide decreased the degree of subsequent labeling of H+-PPase by DEPC. Taken together, we suggest that vacuolar H+-PPase likely contains a substrate-protectable histidine residue contributing to the inhibition of its activity by DEPC, and this histidine residue may located in a domain sensitive to the modification of Cys-629 by NEM.  相似文献   

9.
冬季低温是制约我国葡萄和葡萄酒产业发展的主要因素之一,揭示葡萄在冷胁迫下的信号转导通路、挖掘抗寒相关基因并解析其功能,对高耐寒品种的培育具有重要的理论和应用价值。本研究在欧亚种‘玫瑰香’葡萄(Vitis vinifera L.‘Muscat Hamburg’)冷胁迫相关转录组分析的基础上,鉴定了一个抗寒候选基因,通过同源性分析将其命名为VvCOR27。VvCOR27基因的cDNA序列(1082 bp)中,其开放阅读框(ORF)为909 bp,编码302个氨基酸。同源性分析显示,13个物种的COR27蛋白均具有3个特有的保守结构域。定量RT-PCR分析表明,VvCOR27在4℃低温处理24 h后大量表达。基于基因组序列的启动子基序分析表明,VvCOR27启动子区均只含有1个EE、EEL、G-box、ABREL元件,其数量少于AtCOR27,这可能是VvCOR27响应冷胁迫较AtCOR27滞后的原因。对3个超表达VvCOR27转基因拟南芥株系的抗寒性鉴定表明,VvCOR27参与了植株对冷胁迫的应答并作为正调控因子增强了植株对冷胁迫的耐受能力。  相似文献   

10.
The plant hormone jasmonic acid (JA) is essential for stress responses and the formation of reproductive organs, but its role in fruit development and ripening is unclear. Conjugation of JA to isoleuci...  相似文献   

11.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.  相似文献   

12.
Wang Z  Zhao F  Zhao X  Ge H  Chai L  Chen S  Perl A  Ma H 《Proteomics》2012,12(1):86-94
Gibberellin (GA) is widely used in the table grape and raisin industries to enlarge the berries of seedless varieties. However, the mechanism underlying its berry‐sizing effect is poorly understood. In this study, clusters of Centennial Seedless (Vitis vinifera L.) were treated with 30 ppm GA3 on day 12 after flowering, and berries were sampled at development stages I, II and III for proteomic analysis. Among the 1479 proteins detected on 2‐DE maps, 19, 70 and 69 spots in stages I, II and III, respectively, showed an at least twofold difference in volume between treatments and controls. Of these, 125 proteins were successfully identified and assigned to eight functional groups, chief among them are metabolism and energy, stress response, expression regulation and cytoskeleton proteins. Stress‐response proteins were predominantly down‐regulated in GA3‐treated berries in stages I and II, and significantly up‐regulated in stage III. Up‐regulation of cytoskeleton, cell‐wall modification and other important proteins was found in the two latter stages of berry development. Our proteomic results and subsequent validation revealed, for the first time, the role of redox homeostasis in GA3‐induced berry enlargement and markedly remodeled cellular protein expression in treated berries.  相似文献   

13.
We have cloned a cDNA for vacuolar proton-translocating pyrophosphatase of Chara corallina that is one of the closest green algae to the land plants. The deduced protein consists of 793 amino acid residues. Its sequence is 71% identical to the H+-pyrophosphatases of land plants, and is less than 46% identical to those of marine alga and phototrophic bacterium.  相似文献   

14.
We dissected the regulatory region of the AVP1 gene encoding the vacuolar H+-pyrophosphatase (V-PPase) of Arabidopsis thaliana by using a GUS-reporter assay system. The cloned 1.4 kb 5-regulatory region in the GUS-reporter transgenic plants was sufficient for the light-induced repression. Furthermore, the 1.4 kb regulatory region was active in all tissues examined and its activity was especially enhanced in pollen, whereas the shorter 0.4 kb regulatory region was active only in pollen. Further detailed analyses revealed that the GUS activity in pollen was regulated by at least three cis-acting regions in an additive or synergetic manner. These findings establish a distinct mechanism of the tissue-specific regulation of V-PPase expression in developing pollen, and imply the biological significance of the V-PPase in pollen maturation.  相似文献   

15.
16.
The Arabidopsis gene AVP1 encodes an H+-pyrophosphatase that functions as a proton pump at the vacuolar membranes, generating a proton gradient across vacuolar membranes, which serves as the driving force for many secondary transporters on vacuolar membranes such as Na+/H+-antiporters. Overexpression of AVP1 could improve drought tolerance and salt tolerance in transgenic plants, suggesting a possible way in improving drought and salt tolerance in crops. The AVP1 was therefore introduced into peanut by Agrobacterium-mediated transformation. Analysis of AVP1-expressing peanut indicated that AVP1-overexpression in peanut could improve both drought and salt tolerance in greenhouse and growth chamber conditions, as AVP1-overexpressing peanuts produced more biomass and maintained higher photosynthetic rates under both drought and salt conditions. In the field, AVP1-overexpressing peanuts also outperformed wild-type plants by having higher photosynthetic rates and producing higher yields under low irrigation conditions.  相似文献   

17.
目的:从葡萄中克隆白藜芦醇合酶基因vrs1并对其序列进行生物信息学分析.方法:利用葡萄总RNA为模板,采用RT - PCR技术克隆白藜芦醇合酶基因vrs1并亚克隆进T- Vector.利用生物信息学工具对其核酸和蛋白序列进行分析.结果:测序结果显示其cDNA序列全长为1 257bp,含有一个1 179bp的开放阅读框.生物信息学分析表明葡萄白藜芦醇合酶基因编码392个氨基酸,分子量为42.9kDa,理论等电点为5.97,具有芪合酶家族固有的氨基酸保守结构域,二级结构主要由α-螺旋、无规则卷曲、延伸链和β-转角组成.结论:该基因的克隆、生物信息学分析为进一步研究其功能奠定了基础.  相似文献   

18.
《Process Biochemistry》2007,42(2):271-274
The metabolomic profiling of Vitis vinifera cell suspension cultures with and without silver nitrate was performed by 1H NMR (nuclear magnetic resonance) spectrometry and principal components analysis (PCA), to assess the efficacy of this method for the characterization and monitoring of plant cell lines. The PCA of the 1H NMR spectra of the aqueous fractions allowed a clear discrimination of V. vinifera cell suspension culture samples with and without silver nitrate treatment by the first three principal components (PC1, PC2, and PC3), which cumulatively accounted for 95.9% of the variation in all variables. In particular, the score plots by the combining PC1 versus PC2 and PC2 versus PC3 facilitated an excellent separation of samples. In addition, the major peaks in 1H NMR spectra contributing to the discrimination were assigned to lactate, alanine, acetic acid, choline, fructose, α-glucose, and sucrose. This method based on metabolomic analysis allows the efficient monitoring and the differentiation of normal cell suspension system from elicited systems without any prepurification steps.  相似文献   

19.
We followed C and N reserves of grapevines grown in trenches under semi-controlled conditions over a 3-year period after planting. Temporal mobilization of stored C and N and subsequent distribution of reserve materials within the vines were described in parallel with 15N uptake, particularly during the third growing season. Storage C in the perennial tissues (roots, trunk, canes) was mainly made of starch, which accumulated in the ray parenchyma of the wood. In the permanent tissues, starch and total nitrogen contents were found to decrease early in the development (bleeding sap, budbreak) whereas, on a concentration basis, they decreased only after stage 7 (first leaf fully expanded). Starch started to accumulate again in the perennial tissues during flowering. The same observation was made with total nitrogen, although N levels were much lower than those of starch. The 15N study showed that N uptake by the roots started at budbreak and increased with vine development, becoming predominant over reserve mobilization only after the onset of flowering. Taken together, these results indicate that the spring growth period can be divided into three main phases: In the first (dormancy to budbreak), significant losses of C and N proceed mainly via root necrosis. In the second period (first leaf to the onset of bloom), a strong mobilization of starch (and, to a lower extent, of N) occurred for supporting vegetative and reproductive growth. At that point, most of the C and N reserves used on the spring flush were those of the roots, rather than those of the old wood (trunk, canes). In the third period (bloom and early berry development), the mobilization process became low and was relieved by N uptake (and CO2 assimilation) supplying nutrients to the sink structures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号